Изобретение двс: История двигателя внутреннего сгорания

Содержание

Изобретение двигателя внутреннего сгорания. Кто придумал Двигатель внутреннего сгорания


Двигателей внешнего сгорания не так много как двигателей внутреннего сгорания (ДВС). Все дело в том, что коэффициент полезного действия двигателей с внешним сгоранием топлива гораздо ниже, чем у двигателей со сгоранием топлива внутри цилиндра. Так, например, у паровозов (а у них двигатель внешнего сгорания), КПД всего 5…7%. Топливо нагревает воду (как в скороварке), и она превращается в пар. Этот пар подается в рабочий цилиндр и там он совершает работу. В данном случае – вращает колеса паровоза. А отработанный пар просто выбрасывается в атмосферу.

Более современные двигатели с внешним сгоранием, это, скорее всего, модификации двигателя Стирлинга. Стирлинг предложил не выбрасывать рабочее тело (для паровоза это пар), а нагревать его внутри цилиндра. Это рабочее тело разогреется, увеличится в объеме, или если объем замкнут, увеличится давление. Это давление и произведет работу. Затем этот самый цилиндр нужно охладить. Воздух, или другой газ, уменьшится в объеме и поршень опуститься вниз. Это теоретически, на практике нагревается и остывает сам газ, перемещаясь по специальным каналам. Но принцип остается тот же, газ не покидает пределы замкнутого пространства, а тепло подводится и отводится через стенки цилиндра.

Самые современные двигатели Стирлинга, работающие на солнечной энергии, дают КПД в 31,25%. Однако, они пока не устанавливаются на автомобили из-за сложности конструкции и малой надежности.

Двигатель внутреннего сгорания, потому так и называется, что нагрев рабочего тела (не важно, газ это или пар) происходит внутри замкнутого объема (чаще всего цилиндра). Первым таким двигателем, как не странно это будет звучать, была пушка.

Пороховой заряд, воспламеняясь, нагревал воздух и продукты сгорания пороха внутри канала ствола, и ядро выбрасывалось «пущалось». Отсюда и пушка, от «пущать».

Во всех современных двигателях внутреннего сгорания происходит почти то-же самое – внутри замкнутого объема зажигается некая горючая смесь. Этот «пожар» или «взрыв» нагревает воздух, а он (горячий воздух) производит необходимую работу. Просто поршень в двигателе не выбрасывается наружу, а совершает движения вперед и назад внутри цилиндра.

Изобретатели двигателя, который сейчас установлен на автомобиле

Итак, в связи с тем, что первым двигателем внутреннего сгорания была пушка, необходимо было бы узнать имя изобретателя, но оно, к сожалению, потерялось в веках. Известно, только,что в Европе пушка появилась в 14-м веке, а в восточных странах еще в 13-м.

Христиан Гюйгенс

Христиан Гюйгенс (портрет слева) в начале 17-го века предложил внутрь цилиндра с поршнем насыпать немного пороха. Если этот порох поджечь, то поршень поднимется вверх и шток прикрепленный к поршеню может совершить некоторую работу. Затем аппарат необходимо было разобрать, засыпать новую порцию пороха и продолжить. Шток останавливался в верхнем положении при помощи специального фиксатора.

Конечно, на это сейчас мы смотрим с удивлением, но для 17-го века это был прорыв.

Дени Папен

В 1690 году (конец 17-го века) Дени Папен (портрет справа) усовершенствовал эту конструкцию предложив вместо пороха залить на дно цилиндра воду. Если нагреть цилиндр вода испарится превратившись в пар и этот пар совершит работу подняв поршень. Затем поршень можно остудить пар внутри превратится в воду и процесс можно повторить.

Через 15 лет, в 1705 году английский кузнец Томас Ньюкомен предложил машину для откачки воды из шахт. Его аппарат состоял из котла, который производил пар. Пар подавался в цилиндр и там совершал работу. Для быстрого охлаждения цилиндра он применил форсунку, которая впрыскивала холодную воду в этот цилиндр, тем самым охлаждая его. Конечно, периодически приходилось скопившуюся в цилиндре воду выливать, но машина его работала эффективно. Назвать такую машину двигателем внутреннего сгорания сложно, ведь нагрев воды происходит вне цилиндра, но такова история. Весь 18-й век посвящен изобретению конструкций работающих на использовании энергии пара.

Только в 1801 году французский изобретатель Филип Лебон придумал подавать в цилиндр светильный газ в смеси с воздухом и поджигать его там. Он даже получил патент на этот газовый двигатель. Но в связи с тем, что Лебон рано умер (в 1804 году в возрасте 35 лет), довести свое детище до практической модели не успел.

Этьен Ленуар

Этьен Ленуар (француз с бельгийскими корнями), придумывал различные механические конструкции, работая на гальваническом заводе. Именно он считается изобретателем первого работающего двигателя внутреннего сгорания.

Доработав идею Лебона, в 1860 году он взял за основу двухходовой поршень, который совершал работу двигаясь как вправо, так и влево. А смесь светильного газа и воздуха он поджигал в отдельной камере при помощи электрической искры. Направляя продукты сгорания (в зависимости от положения поршня) либо в правую, либо в левую полость, как пар у паровоза.

Николаус Отто

Как видим это опять не совсем похож на современный двигатель в нашем его понимании, но прародитель его это уж точно. Выпустив более 300 таких двигателей, он разбогател и перестал заниматься изобретательством. Изобретенный Августом Николаусом Отто двигатель вытеснил с рынка двигатели Ленуара. Именно Отто предложил и построил четырехтактный двигатель. КПД его двигателя достигал 15%, это почти в 3 раза выше чем у двигателей Ленуара. Кстати сказать современные бензиновые двигатели имеют КПД не выше 36%, это все чего мы достигли за 150 лет работы над двигателями внутреннего сгорания. На этом четырехтактном цикле работают сейчас большинство двигателей.

Только после изобретения двигателей работающих на жидком топливе (керосине и бензине), их вполне уже можно было устанавливать на повозки, что и сделал Карл Бенс в 1886 году.

Готлиб Даймлер

В компании у Отто работали Готлиб Даймлер (слева) и Вильгельм Майбах (на фото слева). И хотя предприятие работало прибыльно (двигателей Отто было продано более 42 тысяч штук), применение светильного газа резко сужало сферу применения. Даймлер и Майбах впоследствии организовали производство автомобилей постоянно их совершенствуя. Их имена знают практически все. Ведь именно они придумали автомобиль «Мерседес». Сын Вильгельма Майбаха – Карл (на фото справа), занимался авиационными двигателями, а затем и выпуском знаменитых автомобилей «Майбах».

Вильгельм и его сын Карл Майбах

Рудольф Дизель

В 1893 году Рудольф Дизель запатентовал двигатель работающий на отходах производства бензина – солярке.В его двигателе смесь не нужно было воспламенять, она загоралась сама от высокой температуры в цилиндре. Но и смесь воздуха с топливом готовилась несколько по-другому. В его двигателе топливо (солярка) подавалась в цилиндр в конце цикла сжатия специальным насосом. Это было революционным прорывом. Многие современные бензиновые двигатели используют этот метод образования воздушно-топливной смеси. Дизельный же двигатель не претерпел особых изменений.

Теперь на вопрос кто изобретал двигатели внутреннего сгорания Вы точно знаете ответ.

Разработка первого двигателя внутреннего сгорания длилась почти два века, пока автомобилисты смогут узнать . Все начиналось с газа, а не с бензина. В число людей, которые приложили свою руку к истории создания, являются — Отто, Бенц, Майбах, Форд и другие. Но, последние научные открытия перевернули весь автомир, поскольку отцом первого прототипа считался совсем не тот человек.

Леонардо и здесь руку приложил

До 2016 года основателем первого двигателя внутреннего сгорания считался Франсуа Исаак де Риваз. Но, историческая находка, сделанная английскими учеными, перевернула весь мир. При раскопках вблизи одного из французских монастырей, были найдены чертежи, которые принадлежали Леонардо да Винчи. Среди них был чертеж двигателя внутреннего сгорания.

Конечно, если смотреть на первые двигатели, которые создавали Отто и Даймлер, то можно найти конструктивные сходства, а вот с современными силовыми агрегатами их уже нет.

Легендарный да Винчи опередил свое время почти на 500 лет, но поскольку был скован технологиями своего времени, а также финансовыми возможностями, так и не смог сконструировать мотор.

Детально исследовав чертеж, современные историки, инженеры и автоконструкторы с мировым именем, пришли к выводу, что данный силовой агрегат мог работать и довольно продуктивно. Так, компания Форд занялась разработкой прототипа двигателя внутреннего сгорания, основываясь на чертежах да Винчи. Но, эксперимент удался только наполовину. Двигатель завести не удалось.

Но, некоторые современные доработки позволили, все-таки дать жизнь силовому агрегату. Он так и остался экспериментальным прототипом, но кое-что компания Форд, все-таки почерпнула для себя — это размер камер сгорания для легковых автомобилей В-класса, который составляет 83,7 мм. Как оказалось — это идеальный размер для сгорания воздушно-топливной смеси для такого класса моторов.

Инженерия и теория

Согласно историческим фактам, в XVII веке голландский ученый и физик Кристиан Хагенс разработал первый теоретический двигатель внутреннего сгорания на пороховой основе. Но, как и Леонардо был скован технологиями своего времени и воплотить свою мечту в реальность так и не смог.

Франция. 19 век. Начинается эпоха массовых механизаций и индустриализаций. В это время, как раз и можно создать, что-то невероятное. Первый, кто сумел собрать двигатель внутреннего сгорания, был француз Нисефор Ньепс, который он назвал — Пирэолофор. Он работал с братом Клодом, и они вместе до создания ДВС презентовали несколько механизмов, которые не нашли своих заказчиков.

В 1806 году в национальной французской академии прошла презентация первого мотора. Он работал на угольной пыли и имел ряд конструктивных недоработок. Несмотря на все недостатки, мотор получил положительные отзывы и рекомендации. Вследствие этого братья Ньепсе получили финансовую помощь и инвестора.

Первый двигатель продолжал развиваться. Более совершенный прототип был установлен на лодки и небольшие корабли. Но, Клоду и Нисефору этого было не достаточно, они хотели удивить весь мир, поэтому изучали разные точные науки, чтобы совершенствовать свой силовой агрегат.

Так, их старания увенчались успехами, и в 1815 году Нисефор находит труды химика Лавуазье, который пишет, что «летучие масла», которые являются частью нефтепродуктов, при взаимодействии с воздухов могут взрываться.

1817 год. Клод едет в Англию, с целью получения нового патента на двигатель, так как во Франции срок действия подходил к концу. На этом этапе братья расстаются. Клод начинает работать над мотором самостоятельно, не уведомив об этом брата, и требует с него денег.

Разработки Клода нашли подтверждение только в теории. Изобретенный двигатель не нашел широкого производства, поэтому стал частью инженерной истории Франции, а Ньепса увековечили памятником.

Сын известного физика и изобретатель Сади Карно издал трактат, который сделал его легендой автомобилестроительной индустрии и делает его знаменитым на весь мир. Работа насчитывала 200 экземпляров и называлась «Размышления о движущей силе огня и о машинах, способных развивать эту силу» изданная в 1824 году. Именно с этого момента начинается история термодинамики.

1858 год. Бельгийский ученый и инженер Жан Жосефа Этьен Ленуара собирает . Отличительными элементами было то, что он имел карбюратор и первую систему зажигания. Топливом служил каменноугольный газ. Но, первый прототип работал всего несколько секунд, а потом навсегда вышел со строя.

Случилось это потому, что мотор не имел систем смазки и охлаждения. При этой неудачи Ленуар не сдался и продолжил работу над прототипом и уже в 1863 году мотор, установленный на 3-х колесный прототип автомобиля, проехал исторические первые 50 миль.

Все эти разработки положили начало эре автомобилестроения. Первые двигатели внутреннего сгорания продолжали разрабатываться, и их создатели увековечили свои имена в истории. Среди таких были — австрийский инженер Зигфрид Маркус, Джордж Брайтон и другие.

Руль принимают легендарные немцы

В 1876 году эстафету начинают принимать немецкие разработчики, чьи имена в наши дни гремят громко. Первый, кого следует отметить, стал Николас Отто и его легендарный «цикл Отто». Он первый разработал и сконструировал прототип двигатель на 4-х цилиндрах. После этого уже в 1877 году он патентует новый двигатель, который лежит в основе большинства современных моторов и самолетов начала 20 века.

Еще одно имя в истории автомобилестроения, которое многие знают и сегодня — Готлиб Даймлер. Он со своим другом и братом по инженерии Вильгельмом Майбахом разработали мотор на газовой основе.

1886 год стал переломным, поскольку именно Даймлер и Майбах создали первый автомобиль с двигателем внутреннего сгорания. Силовой агрегат получил название «Reitwagen». Этот движок ранее устанавливался на двухколесные транспортные средства. Майбах разработал первый карбюратор с жиклерами, который также эксплуатировался достаточно долго.

Для создания работоспособного двигателя внутреннего сгорания великим инженерам пришлось объединить свои силы и умы. Так, группа ученых, в которую вошли Даймлер, Майбах и Отто начали собирать моторы по две штуки в день, что на тот момент было большой скоростью. Но, как и всегда бывает, позиции ученых в совершенствовании силовых агрегатов разошлись и Даймлер уходит с команды, чтобы основать свою компанию. Вследствие этих событий Майбах следует своему другу.

1889 год Даймлер основывает первую автомобилестроительную фирму «Daimler Motoren Gesellschaft». В 1901 году Майбах собирает первый Мерседес, который положил начало легендарному немецкому бренду.

Еще одним не менее легендарным немецким изобретателем становится Карл Бенц. Его первый прототип двигателя мир увидел в 1886 году. Но, до момента создания первого своего мотора, он успел основать фирму «Benz & Company». Дальнейшая история просто потрясающая. Впечатленный разработками Даймлера и Майбаха, Бенц решил слить все компании воедино.

Так, сначала «Benz & Company» сливается с «Daimler Motoren Gesellschaft», и становиться «Daimler- Benz». Впоследствии соединение коснулось и Майбаха и компания стала называться «Mersedes- Benz».

Еще одно знаменательное событие в автомобилестроение случилось в 1889 году, когда Даймлер предложил разработку V-образного силового агрегата. Его идею подхватил Майбах и Бенц, и уже в 1902 году V-образные двигатели начали выпускаться на самолеты, а позже на автомобили.

Отец основатель автоиндустрии

Но, как не крути, самый большой взнос в развитие автомобилестроения и автодвигательных разработок внес американский конструктор, инженер и просто легенда — Генри Форд. Его лозунг: «Автомобиль для всех» нашел признание у простых людей, что и привлекло их. Основав в 1903 году компанию «Форд», он не только принялся за разработку нового поколения Форд А, но и дал новые рабочие места простых инженерам и людям.

В 1903 году против Форда выступил Селден, который утверждал, что первый использует его разработку двигателя. Судебный процесс длился целых 8 лет, но при этом, ни один из участников, так и не смог выиграть процесс, поскольку суд решил, что права Селдена не нарушены, а Форд использует свой тип и конструкцию мотора.

В 1917 году, когда США вступила в первую мировую войну, компания Форд начинает разработку первого тяжелого двигателя для грузовых автомобилей с повышенной мощностью. Так, к концу 1917 года Генри представляет первых бензиновый 4-х тактный 8-ми цилиндровый силовой агрегат Форд М, который начала устанавливаться на грузовые автомобили, а в последствие и во время 2-й мировой на некоторые грузовые самолеты.

Когда другие автомобилестроители переживали не самые лучшие времена, то компания Генри Форда процветала и имела возможность разрабатывать все новые варианты двигателей, которые нашли применение среди широкого автомобильного ряда автомобилей Форд.

Вывод

По сути, первый двигатель внутреннего сгорания изобрел Леонардо да Винчи, но это было только в теории, поскольку он был скован технологиями своего времени. А вот первый прототип поставил на ноги голландец Кристиан Хагенс. Потом были разработки французских братьев Ньепс.

Но, все же массовой популярности и разработки двигатели внутреннего сгорания получили с разработками таких великих немецких инженеров, как Отто, Даймлер и Майбах. Отдельно стоит отметить заслуги в разработках моторов отца основателя автоиндустрии — Генри Форда.

Итальянский священник, инженер и изобретатель, который вместе с Феличе Маттеуччи (with Felice Matteucci) из Флоренции (Florence) разработал первую версию двигателя внутреннего сгорания в 1853 году. Их заявка на патент была зарегистрирована в Лондоне (London) 12 июня 1854 года и опубликована в «Morning Journal» под заголовком «Specification of Eugene Barsanti and Felix Matteucci, Obtaining Motive Power by the Explosion of Gasses» («Спецификация Эудженио Барсанти и Феличе Маттеуччи, получение движущей силы путем взрывания газов»), что подтверждается документами фонда «Fondazione Barsanti e Matteucci».

Николо Барсанти родился 12 октября 1821 года в Пьетрасанте, Тоскана (Pietrasanta, Tuscany). Он рос невысоким, хрупким, слабого здоровья ребенком, и отец отправил его в прогрессивную для того времени школу братьев-пиаристов – католическую школу, в программе которой было множество новых предметов, в том числе научных, а от учителей требовалось уважительное отношение к ученикам. В 1838 году Барсанти стал послушником и вскоре был рукоположен в сан священника, приняв имя своего отца, Эудженио.

В 1841 году Барсанти начал свою преподавательскую деятельность в Колледже Сан-Микеле (Collegio San Michele) в городе Вольтерра (Volterra). Здесь, во время лекции, рассказывая студентам с помощью эксперимента о взрывчатых свойствах смеси водорода и кислорода, Барсанти вдруг осознал потенциал использования энергии взрыва в двигателе, позже названном двигателем внутреннего сгорания.

В 1845 году он перешел преподавать физику и гидравлику в обсерваторию Osservatorio Ximeniano во Флоренции и получил там возможность развивать и испытывать свои идеи. Кроме того, во Флоренции Барсанти познакомился с инженером-гидравликом Феличе Маттеуччи. Маттеуччи по достоинству оценил идею двигателя, придуманную Барсанти, и оба инженера до конца жизни работали вместе.

5 июня 1853 года они представили свое изобретение в академии Accademia dei Georgofili во Флоренции, а в следующем году запатентовали его в Лондоне, поскольку итальянские законы того времени были не в состоянии обеспечить достаточные гарантии для защиты патента на международном уровне. Регистрация патента в Англии (England) подразумевала его защиту во Франции (France), Бельгии (Belgium), Пруссии (Prussia) и Пьемонте (Piedmont). Конструирование двигателя началось в мастерских Пьетро Бенини (Pietro Benini) в 1860 году. В том же году во время Национальной флорентийской выставки достижений искусства и промышленности был продемонстрирован двигатель Барсанти-Маттеуччи, построенный на механическом заводе в Пиньоне (Pignone), одном из районов Флоренции.

Основным преимуществом двигателя Барсанти-Маттеуччи было использование обратной силы движения поршня вследствие охлаждения газа. Другие двигатели, основанные на толкающей силе взрыва, – один из них был разработан во Франции Этьеном Ленуаром (Etienne Lenoir) — были гораздо медленнее. Двигатель Барсанти-Маттеуччи был куда более эффективен и получил серебряную медаль из Ломбардского научного института. В 1856 году итальянские инженеры разработали двухцилиндровый двигатель мощностью 5 л.с., а двумя годами позже они построили двухпоршневой двигатель.

Барсанти считал, что новый двигатель был огромным усовершенствованием по сравнению с паровым двигателем – он был безопаснее и компактнее, и работал при этом быстрее, однако не настолько быстро, чтобы служить автомобильным мотором. Создатели предполагали, что в основном он будет использоваться для обеспечения механической энергии на заводах и на морских судах. После некоторых поисков инженеры выбрали для массового производства двигателя мощностью в 4 л.с. завод Джона Кокерилла (John Cockerill) в бельгийском Серене (Seraing, Belgium), и вскоре заказы на двигатели стали поступать со всей Европы (Europe).

Увы, 19 апреля 1864 года Барсанти, который остался в Бельгии, чтобы лично контролировать процесс, скоропостижно скончался в Серене от брюшного тифа, и Маттеуччи один остался вести дела. Ему это не удалось, с управлением компанией он не справился, и Маттеуччи вернулся к своему первому занятию, гидравлике. Когда в 1877 немецкий инженер Николаус Отто (Nikolaus Otto) запатентовал свой двигатель, Маттеуччи безуспешно пытался доказать, что первым создателями такого двигателя были он и

Несмотря на изобретение парового двигателя, многие небольшие предприятия и мастерские XIX века не могли его использовать, т.к. это было хлопотно, связано с большими затратами, а КПД небольшого парового двигателя был невысок (меньше 10%). Появилась острая необходимость в двигателе небольшой мощности, занимающего немного места, не требующего долгой подготовки к работе и который можно включать и выключать в любое время. Филипп Лебон в 1799 году открыл светильный газ и получил патент на способ получения и использования этого газа методом сухой перегонки угля или древесины, что значительно повлияло на развитие техники освещения.

В 1801 году Лебон, основываясь на свойстве открытого газа, создал и запатентовал конструкцию газового двигателя
. При воспламенении смесь газа с воздухом взрывалась, выделяя при этом большое количество теплоты. При расширении продукты горения оказывали давление на окружающую среду. При соответствующих условиях выделяемую энергию можно использовать в интересах человека. Двигатель Лебона включал 2 компрессора и камеру смешения. Один компрессор накачивал в камеру сжатый светильный газ, другой — сжатый воздух. Полученная в результате газовоздушная смесь направлялась в рабочий цилиндр, в котором воспламенялась. Это был двигатель двойного действия — действовавшие попеременно рабочие камеры были по обе стороны поршня. По сути, Лебон был близок к созданию двигателя внутреннего сгорания.

После гибели изобретателя в 1804 году было несколько попыток создать двигатель на светильном газе. В 1860 году бельгийский изобретатель Хан Этьен Ленуар создал газовый двигатель, где горючая смесь воспламеняется, как и сейчас, при помощи электрической искры. Вначале из-за нагрева поршень расширялся и мешал нормальной работе мотора. Кроме того, у поршня был плохой ход. Для устранения этих недостатков изобретатель дополнил конструкцию системой охлаждения и системой смазки. Так появился двухтактный ДВС. В 1876 году Н. Отто создал новый четырехтактный двигатель, который и сегодня является основой работы большей части бензиновых и газовых двигателей.

В 1872 году Брайтон решил использовать для двигателя в качестве горючего вначале керосин, но тот плохо испарялся и он перешел к бензину. Чтобы двигатель, работающий на жидком топливе, успешно конкурировал с газовым, потребовалось создать специальное устройство (карбюратор) для получения горючей смеси паров бензина и воздуха. Так появился первый «испарительный» карбюратор. Правда, работал он неудовлетворительно, еще 10 лет почти все двигатели работали на газу.

Наконец, в 1882 году Ю. Даймлер и В. Майбах изобрели полноценный бензиновый двигатель
с воспламенением бензина от трубки накаливания. В 1893 году венгерский изобретатель Донат Банки запатентовал карбюратор с форсункой (жиклером), ставший прообразом современных карбюраторов. Вместо испарения бензина Банки предлагал его мелко распылять в воздухе через дозирующий жиклер. Это позволило равномерно распределить бензин по цилиндру, испарение происходило под действием тепла сжатия в цилиндре.

Первые двигатели были одноцилиндровыми, для увеличения мощности двигателя приходилось увеличивать объем цилиндра. Позже эта проблема стала решаться путем увеличения числа цилиндров. В конце XIX столетия уже были двухцилиндровые двигатели внутреннего сгорания, с начала XX века большое распространение получили четырехцилиндровые. Двигатель внутреннего сгорания является наиболее важной деталью любого автомобиля. С каждым годом совершенствуется конструкция автомобилей, улучшаются технические характеристики двигателя, повышается его эффективность.

Более двух веков прогресс человечества неразрывно связан с различными машинами, особенно с транспортными средствами. Которые помогали быстро перемещать товары от поставщиков к потребителям. Те, кто придумал двигатель внутреннего сгорания (ДВС), внесли весомый вклад в развитие человеческой цивилизации. Поскольку автомобили, корабли и самолеты до сих пор остаются главным двигателем в истории человечества. Первым коммерчески успешным ДВС считается двигатель французского изобретателя из Бельгии Жана Этьена Ленуара.

Первый шаг

В конце 18 века французский механик Филипп Лебон впервые получил светильный газ и запатентовал способ его получения при пиролизе древесины или угля. Смесь метана, водорода и угарного газа стала широко использоваться для освещения улиц европейских городов. Изобретатели многих стран мира взялись за конструирования двигателя, использующего это относительно недорогое и эффективное топливо.

Тогда многие инженеры понимали, что эффективность двигателя повысится, если топливо не сжигать в топке, как в паровом двигателе. А непосредственно в цилиндре.

Однако тем, кто придумал первый стал все тот же Филипп Лебон. В 1801 году, через два года после открытия светильного газа, Лебон получил патент на двигатель, работающий на смеси сжатого газа и воздуха. Они накачивались в рабочий цилиндр и там воспламенялись. Однако изобретение осталось только на бумаге, в 1804 году Лебон был убит. Он остался одним из многих инженеров в истории создания двигателя внутреннего сгорания, кто придумал, но не реализовал на практике свое изобретение.

Первый коммерческий успех

В последующий период механики многих европейских стран пытались создать нормально работающий образец ДВС на светильном газе. Однако все эти усилия долгое время не приводили к появлению двигателя, который мог бы конкурировать по эффективности с паровой машиной.

Тем, кто придумал двигатель внутреннего сгорания, добившегося коммерческого успеха, стал бельгийский механик французского происхождения Жан Этьен Ленуар. Он первым решил воспламенять газовоздушную смесь посредством электрической искры. Возможно, такая идея пришла к нему, потому что инженер работал на гальваническом заводе. Однако успех пришел к нему не сразу. Первая модель проработала совсем немного и остановилась, потому что из-за большой температуры поршень расширился, и его заклинило в цилиндре. Ленуар дополнил свой ДВС водяной системой охлаждения. А после второго неудачного запуска и сконструировал систему смазки. К 1864 году он продал больше 1400 своих двигателей и разбогател.

Первый двигатель в массовом производстве

Среди тех, кто придумал двигатель внутреннего сгорания — немецкий инженер Николас Отто. Он усовершенствовал машину, работающую на светильном газе, и в 1864 году получил патент на свою модель ДВС. Которая была продана в количестве более 5000 штук.

В 1877 году Отто получил патент на двигатель с четырехтактным циклом. Этот принцип лежит и сейчас в основе работы большой части газовых и бензиновых двигателей. В течение следующих двадцати лет было выпущено более 42 000 таких ДВС. Однако использование светильного газа сильно сужало возможности их использования.

Изобретение Дизеля

В начале 19 века было сформулировано описание процесса Карно. Оно утверждало, что в тепловой машине быстрое изменение объема газа (быстрое сжатие) позволит разогреть рабочее тело до температуры горения.

В 1890 году Рудольф Дизель изобрел способ практического использования цикла Карно. Он стал первым, кто придумал дизельный двигатель внутреннего сгорания. В течение нескольких лет немецкий инженер запатентовал несколько вариантов конструкции. Первая, практически работающая модель, была собрана в 1897 году и названа дизель-мотором. С 1889 года начато массовое производство дизельных двигателей.

В поисках нового топлива

Одновременно с совершенствованием ДВС шел активный поиск наиболее эффективного топлива. Уже были опробованы двигатели, использовавшие в качестве горючего угольную пыль, водород, смесь скипидара и спирта, нефть. Некоторые из них работали, но не получили широкого распространения из-за высокой цены. Однако наиболее перспективным направлением для инженеров виделось использование вместо газа паров испаряемого жидкого горючего.

В 1872 году американец Брайтон пытался работать с керосином. Однако тот испарялся не очень интенсивно, и он перешел на бензин более легкой фракции. Для работы на новом топливе необходимо было разработать дополнительное устройство, переводившее новое горючее в газообразное состояние. После чего пары бензина необходимо было смешать с воздухом. Брайтон изобрел и первый испарительный карбюратор, который однако получился не очень удачным. Но именно он задал тренд в использовании горюче-смазочных материалов в качестве топлива.

Бензиновый двигатель

Когда наиболее эффективный вид горючего для ДВС был определен, многие инженеры начали работать над машиной, работающей на бензине. Среди тех, кто придумал бензиновый двигатель внутреннего сгорания, наибольший вклад внес Вместе со своим партнером Вильгельмом Майбахом он создал мастерские в Штутгарте. Там начали производить калильные бензиновые двигатели.

Венгерский инженер Донат Банки тоже относится к тем, кто придумал двигатель внутреннего сгорания. В 1893 году ему выдали патент на карбюратор с жиклером, принцип работы которого до сих пор используется в современных машинах. Первые ДВС были с одним цилиндром, в конце 19 века появились двухцилиндровые, а с началом 20 века — четырехцилиндровые.

Год изобретения двигателя внутреннего сгорания

Содержание

Тепловые машины (в основном, паровые) с момента появления отличались большими габаритами и это обусловленно в значительной степени применением внешнего сгорания (требовались: котлы, конденсаторы, испарители, теплообменники, тендеры, насосы, водяные резервуары и др.). В то же время основная (функциональная) часть паровой машины (поршень и цилиндр) сравнительно невелика. Поэтому мысль изобретателей всё время возвращалась к возможности совмещения топлива с рабочим телом двигателя, позволившего затем значительно уменьшить габариты интенсифицировать процессы впуска и выпуска рабочего тела. Облегчение двигателей позволило устанавливать их на транспорте, в том числе даже на самолёт. Современные самолёты (кроме небольшого количества на электромоторах) комплектуются исключительно двигателями внутреннего сгорания – реактивными, турбореактивными, или поршневыми.

Прогресс в области ДВС тесно увязан с открытием и применением различных топлив, включая синтезированные. Поскольку состав рабочего тела (получающегося сгоранием топливо-воздушной смеси), теплотворная способность, скорость сгорания смеси, и параметры цикла (степень сжатия) зависит от применённого топлива, оно и определяет в значительной части массо-габаритные и мощностные показатели таких двигателей. Топливо ДВС определяет устройство последнего, и вообще возможность его создания. Первым таким топливом стал светильный газ.

Газовый двигатель Лебона [ править | править код ]

В 1799 году французский инженер Филипп Лебон открыл светильный газ и получил патент на использование и способ получения светильного газа путём сухой перегонки древесины или угля. Это открытие имело огромное значение, прежде всего для развития техники освещения. Очень скоро во Франции, а потом и в других странах Европы газовые лампы стали успешно конкурировать с дорогостоящими свечами. Однако светильный газ годился не только для освещения. Изобретатели взялись за конструирование двигателей, способных заменить паровую машину, при этом топливо сгорало бы не в топке, а непосредственно в цилиндре двигателя.

В 1801 году Лебон взял патент на конструкцию газового двигателя. Принцип действия этой машины основывался на известном свойстве открытого им газа: его смесь с воздухом взрывалась при воспламенении с выделением большого количества теплоты. Продукты горения стремительно расширялись, оказывая сильное давление на окружающую среду. Создав соответствующие условия, можно использовать выделяющуюся энергию в интересах человека. В двигателе Лебона были предусмотрены два компрессора и камера смешивания. Один компрессор должен был накачивать в камеру сжатый воздух, а другой — сжатый светильный газ из газогенератора. Газовоздушная смесь поступала потом в рабочий цилиндр, где воспламенялась. Двигатель был двойного действия, то есть попеременно действовавшие рабочие камеры находились по обе стороны поршня. По существу, Лебон вынашивал мысль о двигателе внутреннего сгорания, однако в 1804 году он был убит, не успев воплотить в жизнь своё изобретение [1] .

Двигатель Ленуара [ править | править код ]

В последующие годы несколько изобретателей из разных стран пытались создать работоспособный двигатель на светильном газе. Однако все эти попытки не привели к появлению на рынке двигателей, которые могли бы успешно конкурировать с паровой машиной. Честь создания коммерчески успешного двигателя внутреннего сгорания принадлежит бельгийскому механику Жану Этьену Ленуару. Работая на гальваническом заводе, Ленуар пришёл к мысли, что топливовоздушную смесь в газовом двигателе можно воспламенять с помощью электрической искры, и решил построить двигатель на основе этой идеи.

Ленуар не сразу добился успеха. После того как удалось изготовить все детали и собрать машину, она проработала совсем немного и остановилась, так как из-за нагрева поршень расширился и заклинил в цилиндре. Ленуар усовершенствовал свой двигатель, продумав систему водяного охлаждения. Однако вторая попытка запуска также закончилась неудачей из-за заедания поршня. Ленуар дополнил свою конструкцию системой смазки, только тогда двигатель начал работать. Таким образом, именно Ленуар впервые решил проблемы смазки и охлаждения ДВС. Двигатель Ленуара имел мощность около 12 л.с. с КПД около 3,3% [2] .

Двигатель Отто [ править | править код ]

К 1864 году было выпущено уже более 300 таких двигателей разной мощности. Разбогатев, Ленуар перестал работать над усовершенствованием своей машины, и это предопределило её судьбу — она была вытеснена с рынка более совершенным двигателем, созданным немецким изобретателем Николаусом Отто.

В 1864 году он получил патент на свою модель газового двигателя и в том же году заключил договор с богатым инженером Лангеном для эксплуатации этого изобретения. Вскоре была создана фирма «Отто и Компания».

На первый взгляд, двигатель Отто представлял собой шаг назад по сравнению с двигателем Ленуара. Цилиндр был вертикальным. Вращаемый вал помещался над цилиндром сбоку. Вдоль оси поршня к нему была прикреплена рейка, связанная с валом. Двигатель работал следующим образом. Вращающийся вал поднимал поршень на 1/10 высоты цилиндра, в результате чего под поршнем образовывалось разрежённое пространство и происходило всасывание смеси воздуха и газа. Затем смесь воспламенялась. Ни Отто, ни Ланген не владели достаточными знаниями в области электротехники и отказались от электрического зажигания. Воспламенение они осуществляли открытым пламенем через трубку. При взрыве давление под поршнем возрастало примерно до 4 атм. Под действием этого давления поршень поднимался, объём газа увеличивался и давление падало. При подъёме поршня специальный механизм отсоединял рейку от вала. Поршень сначала под давлением газа, а потом по инерции поднимался до тех пор, пока под ним не создавалось разрежение. Таким образом, энергия сгоревшего топлива использовалась в двигателе с максимальной полнотой. В этом заключалась главная оригинальная находка Отто. Рабочий ход поршня вниз начинался под действием атмосферного давления, и после того, как давление в цилиндре достигало атмосферного, открывался выпускной вентиль, и поршень своей массой вытеснял отработанные газы. Из-за более полного расширения продуктов сгорания КПД этого двигателя был значительно выше, чем КПД двигателя Ленуара и достигал 15 % (до 22%? [2] ), то есть превосходил КПД самых лучших паровых машин того времени [3] .

Поскольку двигатели Отто были почти в пять раз экономичнее двигателей Ленуара, они сразу стали пользоваться большим спросом. В последующие годы их было выпущено около пяти тысяч. Отто упорно работал над усовершенствованием их конструкции. Вскоре зубчатую рейку заменила кривошипно-шатунная передача. Но самое существенное из его изобретений было сделано в 1877 году, когда Отто взял патент на новый двигатель с четырёхтактным циклом. Этот цикл по сей день лежит в основе работы большинства газовых и бензиновых двигателей. В следующем году новые двигатели уже были запущены в производство.

Четырёхтактный цикл был самым большим техническим достижением Отто. Но вскоре обнаружилось, что за несколько лет до его изобретения точно такой же принцип работы двигателя был описан французским инженером Бо де Роша. Группа французских промышленников оспорила в суде патент Отто. Суд счёл их доводы убедительными. Права Отто, вытекавшие из его патента, были значительно сокращены, в том числе было аннулировано его монопольное право на четырёхтактный цикл.

Хотя конкуренты наладили выпуск четырёхтактных двигателей, отработанная многолетним производством модель Отто всё равно была лучшей, и спрос на неё не прекращался. К 1897 году было выпущено около 42 тысяч таких двигателей разной мощности. Однако то обстоятельство, что в качестве топлива использовался светильный газ, сильно сужало область применения первых двигателей внутреннего сгорания (невозможно применения на транспорте, ввиду громоздкости баллонов и трудностей заправки). Количество светильногазовых заводов было незначительно даже в Европе, а в России их вообще было только два- в Москве и Петербурге.

Поэтому не прекращались поиски нового горючего для двигателя внутреннего сгорания. Некоторые изобретатели пытались применить в качестве газа пары жидкого топлива. Ещё в 1872 году американец Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся, и Брайтон перешёл к более лёгкому нефтепродукту — бензину. Но для того, чтобы двигатель на жидком топливе мог успешно конкурировать с газовым, необходимо было создать специальное устройство для испарения бензина и получения горючей смеси его с воздухом. Брайтон в том же 1872 году придумал один из первых так называемых «испарительных» карбюраторов, но он действовал неудовлетворительно.

Бензиновый двигатель [ править | править код ]

Работоспособный бензиновый двигатель появился только десятью годами позже. Вероятно, первым его изобретателем можно назвать Костовича О.С., предоставившим работающий прототип бензинового двигателя в 1880 году. Однако его открытие до сих пор остается слабо освещенным. В Европе в создании бензиновых двигателей наибольший вклад внес немецкий инженер Готлиб Даймлер. Много лет он работал в фирме Отто и был членом её правления. В начале 80-х годов он предложил своему шефу проект компактного бензинового двигателя, который можно было бы использовать на транспорте. Отто отнёсся к предложению Даймлера холодно. Тогда Даймлер вместе со своим другом Вильгельмом Майбахом принял смелое решение — в 1882 году они ушли из фирмы Отто, приобрели небольшую мастерскую близ Штутгарта и начали работать над своим проектом.

Проблема, стоявшая перед Даймлером и Майбахом была не из лёгких: они решили создать двигатель, который не требовал бы газогенератора, был бы очень лёгким и компактным, но при этом достаточно мощным, чтобы двигать экипаж. Увеличение мощности Даймлер рассчитывал получить за счёт увеличения частоты вращения вала, но для этого необходимо было обеспечить требуемую частоту воспламенения смеси. В 1883 году был создан первый калильный бензиновый двигатель с зажиганием от раскалённой трубочки, вставляемой в цилиндр. Первая модель бензинового двигателя предназначалась для промышленной стационарной установки [3] .

Процесс испарения жидкого топлива в первых бензиновых двигателях оставлял желать лучшего. Поэтому настоящую революцию в двигателестроении произвело изобретение карбюратора. Создателем его считается венгерский инженер Донат Банки. В 1893 году он взял патент на карбюратор с жиклёром, который был прообразом всех современных карбюраторов. В отличие от своих предшественников Банки предлагал не испарять бензин, а мелко распылять его в воздухе. Это обеспечивало его равномерное распределение по цилиндру, а само испарение происходило уже в цилиндре под действием тепла сжатия. Для обеспечения распыления всасывание бензина происходило потоком воздуха через дозирующий жиклёр, а постоянство состава смеси достигалось за счёт поддержания постоянного уровня бензина в карбюраторе. Жиклёр выполнялся в виде одного или нескольких отверстий в трубке, располагавшейся перпендикулярно потоку воздуха. Для поддержания напора был предусмотрен маленький бачок с поплавком, который поддерживал уровень на заданной высоте, так что количество всасываемого бензина было пропорционально количеству поступающего воздуха.

Первые двигатели внутреннего сгорания были одноцилиндровыми, и, для того чтобы увеличить мощность двигателя, обычно увеличивали объём цилиндра. Потом этого стали добиваться увеличением числа цилиндров.

В конце XIX века появились двухцилиндровые двигатели, а с начала XX столетия стали распространяться четырёхцилиндровые.

Многие ученые и инженеры внесли свой вклад в разработку двигателей внутреннего сгорания. В 1791 году Джон Барбер изобрел газовую турбину. В 1794 году Томас Мид запатентовал газовый двигатель. В том же 1794 году Роберт Стрит запатентовал двигатель внутреннего сгорания на жидком топливе и построил рабочий прототип. В 1807 году французские инженеры Никифор и Клод Ниепсе запустили экспериментальный твердотопливный двигатель внутреннего сгорания, который использовал в качестве топлива измельченный в порошок пиреолофор. В 1807 году французский изобретатель Франсуа Исаак де Риваз построил первый поршневой двигатель, называемый часто двигателем де Риваза [en] . Двигатель работал на газообразном водороде, имея элементы конструкции, с тех пор вошедшие в последующие прототипы ДВС: поршневую группу и искровое зажигание. Кривошипно-шатунного механизма в конструкции двигателя ещё не было.

Первый практически пригодный двухтактный газовый ДВС был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Мощность составляла 8,8 кВт (11,97 л. с.). Двигатель представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника и золотниковым газораспределением. В конструкции двигателя появился кривошипно-шатунный механизм. КПД двигателя не превышал 4,65 %. Несмотря на недостатки, двигатель Ленуара получил некоторое распространение. Использовался как лодочный двигатель.

Познакомившись с двигателем Ленуара, осенью 1860 года выдающийся немецкий конструктор Николаус Аугуст Отто с братом построили копию газового двигателя Ленуара и в январе 1861 года подали заявку на патент на двигатель с жидким топливом на основе газового двигателя Ленуара в Министерство коммерции Пруссии, но заявка была отклонена. В 1863 году создал двухтактный атмосферный двигатель внутреннего сгорания. Двигатель имел вертикальное расположение цилиндра, зажигание открытым пламенем и КПД до 15 %. Вытеснил двигатель Ленуара.

В 1876 году Николаус Август Отто построил более совершенный четырёхтактный газовый двигатель внутреннего сгорания.

В 1884 году [4] Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель. Двигатель Костовича был оппозитным, с горизонтальным размещением направленных встречно цилиндров [5] . В нём впервые в мире было применено электрическое зажигание [6] . Он был 4-тактным, 8-цилиндровым, с водяным охлаждением. Мощность двигателя составляла 80 л. с. при массе двигателя 240 кг [7] , что существенно превышало показатели двигателя Г. Даймлера, созданного годом позже. Однако, заявку на свой двигатель Костович подал только 14 мая 1888 г. [8] , а патент получил в 1892 г., т.е. позже, чем Г. Даймлер и В. Майбах, разрабатывавшие карбюраторный двигатель параллельно и независимо от О. Костовича.

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали лёгкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885, а в 1886 году — на первом автомобиле.

Двигатель Дизеля и Тринклера [ править | править код ]

Немецкий инженер Рудольф Дизель, опираясь на богатые угольные ресурсы Германии (ввиду отсутствия в последней месторождений нефти) в 1897 предложил двигатель с воспламенением от сжатия, работавшим на угольной пыли. Однако, такой двигатель ввиду быстрого абразивного износа поршневой группы, низкой скорости и полноты сгорания угля не получил никакого распространения. Однако, имя Дизеля стало нарицательным для всех моторов с воспламенением от сжатия.

На заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Петербурге в 1898—1899 Густав Васильевич Тринклер усовершенствовал этот двигатель, использовав бескомпрессорное распыливание топлива, что позволило применить в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем. В 1899 на заводе «Людвиг Нобель» построили первый дизель в России и развернули массовое производство дизелей. Этот первый дизель имел мощность 20 л. с., один цилиндр диаметром 260 мм, ход поршня 410 мм и частоту вращения 180 об/мин. В Европе дизельный двигатель, усовершенствованный Густавом Васильевичем Тринклером, получил название «русский дизель» или «Тринклер-мотор». На всемирной выставке в Париже в 1900 двигатель Дизеля получил главный приз. В 1902 Коломенский завод купил у Эммануила Людвиговича Нобеля лицензию на производство дизелей и вскоре наладил массовое производство.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

В 1896 году Чарльз В. Харт [en] и Чарльз Парр [en] разработали двухцилиндровый бензиновый двигатель. В 1903 году их фирма построила 15 тракторов. Их шеститонный #3 является старейшим трактором с двигателем внутреннего сгорания в Соединенных Штатах и хранится в Смитсоновском Национальном музее американской истории в Вашингтоне, округ Колумбия. Бензиновый двухцилиндровый двигатель имел совершенно ненадёжную систему зажигания и мощность 30 л. с. на холостом ходу и 18 л. с. под нагрузкой [9] .

Первым практически пригодным трактором с двигателем внутреннего сгорания был американский трёхколёсный трактор lvel Дэна Элбона 1902 года. Было построено около 500 таких лёгких и мощных машин.

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

На первом в мире теплоходе — нефтеналивной барже «Вандал», построенной в 1903 году в России на Сормовском заводе для «Товарищества Братьев Нобель», были установлены три четырёхтактных двигателя Дизеля мощностью по 120 л. с. каждый. В 1904 году был построен теплоход «Сармат».

Практически одновременно в Германии по заказу СССР был по проекту профессора Ю. В. Ломоносова и по личному указанию Ленина в 1924 году на заводе Эсслинген [de] (бывш. Кесслер) близ Штутгарта построен тепловоз Ээл2 (первоначально Юэ001).

Реактивные, турбореактивные, газотурбинные, роторные ДВС [ править | править код ]

Начали широкое техническое развитие только в XX веке, ввиду сложностей технического характера для их конструирования, расчёта и изготовления. Хотя первые реактивные двигатели применяли в ракетах ещё задолго до этого, они имели ограниченное применение (пиротехника, военное дело) и были одноразовыми (разрушались вместе с ракетой). Космонавтика стала возможна лишь благодаря новым, усовершенствованным ДВС (многоступенчатые ракеты с мощными ЖРД).

Турбореактивные двигатели были анонсированы в условиях военных действий в гитлеровской Германии. Первые такие двигатели были установлены на реактивных самолётах, таких как Ме-262, беспилотный самолёт-снаряд Фау-1. Неоценимый вклад в этой области внёс Вернер фон Браун: разработанные им двигатели на новых ракетах Сатурн-5 позволили осуществить лунную программу. Без разработки столь мощных и надёжных ДВС выход за пределы атмосферы до сих пор является невозможным.

Газотурбинные двигатели, также СПГГ и дизель-молоты имеют широкое распространение в промышленности, строительстве, флоте и военном деле. Начиная с середины XX века, они получили широчайшее распространение.

Роторные ДВС одно время представлялись полноценным заменителем поршневых ДВС. Однако, несмотря на все усилия конструкторов фирмы Mazda и последующих, они не смогли уложиться в ужесточающиеся новые экологические нормы. Вместе с этим, осталась проблемой и долговечность таких двигателей, наряду с достаточно большой стоимостью изготовления и ремонта. Поэтому к настоящему времени такие двигатели почти полностью исчезли, их область применения занята поршневыми комбинированными и газотурбинными двигателями.

Двигатель – одно из основных составляющих автомобиля. Без изобретения двигателя автомобилестроение, скорее всего, остановилось в развитии сразу же после изобретения колеса. Рывок в истории создания автомобилей, произошел благодаря изобретению двигателя внутреннего сгорания. Это устройство стало реальной движущей силой, дающей скорость.

Попытки создать устройство, подобное двигателю внутреннего сгорания, начались с 18 века. Созданием устройства, которое могло бы преобразовывать энергию топлива в механическую, занимались многие изобретатели.

Первыми в этой области были братья Ньепс из Франции. Они придумали прибор, который сами назвали «пирэолофор». В качестве топлива для данного двигателя должна была использоваться угольная пыль. Однако, данное изобретение так и не получило научного признания, и существовала, по сути, только в чертежах.

Первым успешным двигателем, который начал продаваться, был двигатель внутреннего сгорания бельгийского инженера Ж.Ж. Этьена Ленуара. Год рождения этого изобретения – 1858. Это был двухтактовый электрический двигатель с карбюратором и искровым зажиганием. Топливом для устройства служил каменноугольный газ. Однако изобретатель не учел потребность в смазке и охлаждении своего двигателя, поэтому он работал очень недолго. В 1863 году Ленуар переделал свой двигатель – добавил недостающие системы и в качестве топлива ввел в использование керосин.

Устройство было крайне несовершенным – сильно нагревался, неэффективно использовал смазку и топливо. Однако с помощью него ездили трехколесные автомобили, которые так же были далеки от совершенства.

В 1864 году был изобретен одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов. Автором изобретения стал Зигфрид Маркус, он же представил общественности транспортное средство, развивающее скорость 10 миль в час.

В 1873 году еще один инженер – Джордж Брайтон – смог сконструировать 2-х цилиндровый двигатель. Изначально он работал на керосине, а позже на бензине. Недостатком этого двигателя была излишняя массивность.

В 1876 году произошел рывок в индустрии создания двигателей внутреннего сгорания. Николас Отто впервые создал технически сложное устройство, которое эффективно преобразовывало энергию топлива в механическую энергию.

В 1883 году француз Эдуард Деламар разрабатывает чертеж двигателя, топливом для которого служит газ. Однако его изобретение существовало только на бумаге.

1185 году в истории автомобилестроения появляется громкое имя – Готтлиб Даймлер. Он смог не только изобрести, но и запустить в производство прототип современного газового двигателя – с вертикально расположенными цилиндрами и карбюратором. Это был первый компактный двигатель, который к тому же способствовал развитию приличной скорости перемещения.

Параллельно с Даймлером над созданием двигателей и автомобилей работал Карл Бенц.

В 1903 году предприятия Даймлера и Бенца объединились, дав начало полноценному предприятию автомобилестроения. Так началась новая эра, послужившая дальнейшему совершенствованию двигателя внутреннего сгорания.

Бензиновый двигатель внутреннего сгорания прочно вошел в нашу жизнь и останется в ней еще на неопределенное время. Развитие альтернативных топливных технологий предполагает, что в некотором будущем бензиновый мотор станет в конечном счете лишь историей, однако его потенциал, по расчетам специалистов, исчерпан лишь на 75 процентов, что позволяет назвать бензиновый ДВС на данный момент одним из главных типов двигателей в на шем мире.

Изобретение бензинового мотора, как и многих других современных вещей, существование без которых сегодня немыслимо, произошло благодаря, в общем-то, случайности, когда в 1799 году французом Ф. Лебоном был открыт светильный газ – смесь водорода, окиси углерода, метана и некоторых других горючих газов. Как предполагает его название, светильный газ использовался для осветительных приборов, заменивших в то время свечи, однако в скором времени Лебон нашел ему и другое применение. Изучая свойства найденного газа, инженер заметил, что его смесь с воздухом взрывается, выделяя большое количество энергии, которую можно использовать в интересах человека. В 1801 году Лебон запатентовал первый газовый двигатель, состоящий из двух компрессоров и камеры сгорания. По существу газовый двигатель Лебона стал примитивным прототипом современного ДВС.

Нужно отметить, что попытки поставить тепловую энергию взрыва на службу человечеству предпринимались задолго до рождения Лебона. Еще в 17-м веке нидерландский ученый Христиан Гюйгенс использовал порох, чтобы приводить в движение водяные насосы, доставляющие воду в сады Версальского дворца, а итальянский физик Алессандро Вольта в конце 80-х годов 18 века изобрел «электрический пистолет», в котором электрическая искра воспламеняла смесь водорода и воздуха, выстреливая из ствола кусок пробки.

В 1804 году Лебон трагически погиб и развитие технологии внутреннего загорания на некоторое время приостановилось, пока бельгиец Жан Этьен Ленуар не догадался использовать принцип электрического зажигания для воспламенения смести в газовом двигателе. После нескольких неудачных попыток, Ленуару удалось создать работающий двигатель внутреннего сгорания, который он запатентовал в 1859 году. К сожалению, Ленуар оказался больше коммерсантом, чем изобретателем. Выпустив несколько сотен своих моторов, он заработал довольно приличную сумму денег и прекратил дальнейшее усовершенствование своего изобретения. Тем не менее, двигатель Ленуара, использовавшийся как привод локомотивов, дорожных экипажей, судов и в стационарном виде, считается первым в истории работающим двигателем внутреннего сгорания.

В 1864 году немецкий инженер Август Отто получил патент на собственную модель газового двигателя, КПД которого достигал 15-ти процентов, то есть был не только эффективнее двигателя Ленуара, но и эффективнее любого парового агрегата, существовавшего в то время. Совместно с промышленником Лангеном, Отто создал фирму «Отто и Компания», в планы которой входило производство новых моторов, которых было выпущено около 5 000 экземпляров. В 1877 году Отто запатентовал четырехтактный двигатель внутреннего сгорания, однако, как оказалось, четырехтактный цикл был изобретен еще за несколько лет до этой даты французом Бо де Рошем. Судебная тяжба между этими инженерами закончилась поражением Отто, в результате чего его монопольные права на четырёхтактный цикл были отозваны. Тем не менее, конструкция двигателя Отто во многом превосходила французский аналог, что и предопределило его успех – к 1897 году было выпущено уже 42 000 таких моторов различной мощности.

Светильный газ в качестве топлива для ДВС существенно суживал область их применения, поэтому инженерами из разных стран постоянно проводились поиски нового, более доступного горючего. Одним из первых изобретателей, применивших бензин в качестве топлива для ДВС, был американец Брайтон, разработавший в 1872 году так называемый «испарительный» карбюратор. Однако его конструкция была настолько несовершенной, что он оставил свои попытки.

Лишь через десять лет после изобретения Брайтона был создан работоспособный двигатель внутреннего сгорания, работающий на бензине. Готлиб Даймлер, талантливый немецкий инженер, работавший на фирме Отто, еще в начале 80-х годов 19-го века предложил начальнику разработанный им самим проект бензинового мотора, который можно было бы использовать на дорожном транспорте, однако Отто отверг его начинания. В ответ на это Даймлер и его друг Вильгельм Майбах уволились из «Отто и Компания» и организовали собственное дело. Первый бензиновый двигатель Даймлера-Майбаха появился в 1883 году и предназначался для установки стационарно. Зажигание в цилиндре происходило от полой раскаленной трубочки, но в целом конструкция мотора оставляла желать лучшего именно из-за неудовлетворительного зажигания, а так же процесса испарения бензина.

На этом этапе требовалась более простая и надежная система испарения бензина, которая была изобретена в 1893 году венгерским конструктором Донатом Банки. Он изобрел карбюратор, ставший прообразом карбюраторных систем, известных сегодня. Банки предложил революционную по тем временам идею – не испарять бензин – а равномерно распылять его по цилиндру. Поток воздуха всасывал бензин через дозирующий жиклёр, сделанный в форме трубки с отверстиями. Напор потока поддерживался посредством небольшого бачка с поплавком, обеспечивающим постоянную пропорциональную смесь воздуха и бензина.

С этого момента в истории развитие ДВС пошло по нарастающей. Первые карбюраторные моторы имели всего один цилиндр. Рост мощности достигался за счет увеличения объема цилиндра, однако уже к концу столетия начали появиться двухцилиндровые двигатели, а с началом 20-го века все большее распространение начали получать моторы с четырьмя цилиндрами.

Двигатель внутреннего сгорания. Общечеловеческое эпохальное изобретение.

Двигатель внутреннего сгорания. Общечеловеческое эпохальное изобретение.

 

Двигатель внутреннего сгорания. Общечеловеческое эпохальное изобретение.

Двигатель внутреннего сгорания — это тепловой двигатель, использующий энергию химических реакций, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.

Двигатель внутреннего сгорания, как любая другая тепловая машина, преобразует тепловую энергию от сгорания топлива в механическую работу.

 

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

Один из первых двигателей внутреннего сгорания был сконструирован французским механиком Этьеном Ленуаром в 1860 году. Это был двухтактный газовый двигатель внутреннего сгорания, его мощность составляла 11,97 лошадиных силы. Двигатель Ленуара представлял собой одноцилиндровую горизонтальную машину двойного действия, работавшую на смеси воздуха и светильного газа с электрическим искровым зажиганием от постороннего источника. Коэффициент полезного действия (КПД) двигателя не превышал 4,65 %. Несмотря на существенные недостатки, двигатель Ленуара получил некоторое распространение. В частности, он использовался как лодочный двигатель.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

Выдающийся немецкий конструктор Николаус Аугуст Отто, тщательно изучивший двигатель Ленуара, в 1863 году создал свой двухтактный атмосферный двигатель внутреннего сгорания. Двигатель Отто имел вертикальное расположение цилиндра, зажигание открытым пламенем и коэффициент полезного действия (КПД)  до 15 %. Двигатель Отто сразу же вытеснил двигатель Ленуара из практического использования.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1876 году Николаус Аугуст Отто построил более совершенный четырехтактный газовый двигатель внутреннего сгорания.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1880-х годах Огнеслав Степанович Костович в России построил первый бензиновый карбюраторный двигатель.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1885 году немецкие инженеры Готтлиб Даймлер и Вильгельм Майбах разработали легкий бензиновый карбюраторный двигатель. Даймлер и Майбах использовали его для создания первого мотоцикла в 1885 году, и первого автомобиля в 1886 году.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

Немецкий инженер Рудольф Дизель стремился повысить эффективность двигателя внутреннего сгорания и в 1897 году предложил двигатель с воспламенением от сжатия.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

Двигатель Дизеля в 1898-1899 годах был усовершенствован Густавом Васильевичем Тринклером, который работал на заводе «Людвиг Нобель» Эммануила Людвиговича Нобеля в Санкт-Петербурге. Густав Васильевич Тринклер усовершенствовал двигатель Дизеля, использовав бескомпрессорное распыливание топлива, что позволило применить для двигателя в качестве топлива нефть. В результате бескомпрессорный двигатель внутреннего сгорания высокого сжатия с самовоспламенением стал наиболее экономичным стационарным тепловым двигателем.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1896 году в США Чарльз В. Харт и Чарльз Парр разработали двухцилиндровый бензиновый двигатель. Бензиновый двухцилиндровый двигатель Харта и Парра имел мощность 30 лошадиных сил на холостом ходу и 18 лошадиных сил под нагрузкой. В 1903 году их фирма, используя эти двигатели, построила 15 тракторов.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1903 году состоялся полёт первого самолёта братьев Орвила и Уилбура Райт. Двигатель самолёта изготовил механик Чарли Тэйлор. Основные части двигателя сделали из алюминия. Двигатель Райт-Тэйлора был примитивным вариантом бензинового инжекторного двигателя.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

В 1908 году главный инженер Коломенского завода Р. А. Корейво строит и патентует во Франции двухтактный дизель с противоположно-движущимися поршнями и двумя коленвалами. Дизели Корейво стали широко использоваться на теплоходах Коломенского завода. Выпускались они и на заводах Нобелей.

Двигатель внутреннего сгорания. История двигателя внутреннего сгорания.

Полностью описать всю историю развития и модернизации двигателей внутреннего сгорания невозможно.

Начиная с конца 19 века, множество изобретателей в разных странах трудились над созданием все более совершенных двигателей, работающих по принципу внутреннего сгорания. Этот процесс продолжается и в наши дни.

 

 

Двигатель внутреннего сгорания. Типы современных двигателей внутреннего сгорания:

— Бензиновые двигатели внутреннего сгорания

а). Бензиновые карбюраторные. Технические особенности карбюраторных двигателей – смесь топлива с воздухом предварительно готовится в карбюраторе, далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи.

б). Бензиновые инжекторные. Технические особенности инжекторных двигателей –используют способ непосредственного смесеобразования в цилиндре двигателя путём впрыска бензина во впускной коллектор или непосредственно в цилиндр при помощи распыляющих форсунок (инжекторов). Существуют системы одноточечного (моновпрыск), и распределённого впрыска различных механических и электронных систем. В механических системах впрыска дозация топлива осуществляется плунжерно-рычажным механизмом с возможностью электронной корректировки состава смеси. В электронных системах смесеобразование осуществляется с помощью электронного блока управления (ЭБУ), управляющего электрическими бензиновыми вентилями.

— Дизельные двигатели внутреннего сгорания, с воспламенением от сжатия

Технические особенности дизельных двигателей — дизельный двигатель характеризуется воспламенением топлива без использования свечи зажигания. В разогретый от сжатия в цилиндре воздух (до температуры, превышающей температуру воспламенения топлива) через форсунку впрыскивается порция топлива. В процессе впрыскивания топливной смеси происходит его распыливание, а затем вокруг отдельных капель топливной смеси возникают очаги возгорания, и по мере впрыскивания топливная смесь сгорает в виде факела.

— Газовые двигатели внутреннего сгорания

Технические особенности дизельных двигателей — газовые двигатели внутреннего сгорания, использующие в качестве топлива различные виды газов и газовых смесей, содержащих водород, кислород и углеводороды.

— Газодизельные двигатели внутреннего сгорания

Технические особенности газодизельных двигателей — основная порция топлива приготавливается, как в одной из разновидностей газовых двигателей, но зажигается не электрической свечой, а запальной порцией дизтоплива, впрыскиваемого в цилиндр аналогично дизельному двигателю.

— Роторно-поршневые двигатели внутреннего сгорания. Этот двигатель был изобретен Ванкелем в начале 20-го века.

Технические особенности роторно-поршневых двигателей.

В двигателе нет традиционных цилиндров и поршней. Основа двигателя — треугольный ротор (поршень), вращающийся в камере особой 8-образной формы, исполняющий функции поршня, коленвала и газораспределителя.

Такая конструкция позволяет осуществить любой 4-тактный цикл Дизеля, Стирлинга или Отто без применения специального механизма газораспределения.

За один оборот двигатель выполняет три полных рабочих цикла, что эквивалентно работе шестицилиндрового поршневого двигателя.

При своей принципиальной простоте роторно-поршневой двигатель имеет ряд существенных конструктивных сложностей, делающих его широкое внедрение весьма затруднительным. Основные трудности связаны с созданием долговечных работоспособных уплотнений между ротором и камерой и с построением системы смазки. По данным причинам весьма ограничен в практическом использовании.

 

 

 Двигатель внутреннего сгорания.

Двигатель внутреннего сгорания. История двигателей внутреннего сгорания продолжается и в наше время. Развитие двигателей идет в направлениях:

— увеличения коэффициента полезного действия.

— увеличения срока службы и надежности.

— увеличения мощности.

— работа в сложных условиях.

— уменьшение удельного веса.

 

 

 

Двигатель внутреннего сгорания. Общечеловеческое эпохальное изобретение.

Двигатель внутреннего сгорания. Изобретение двигателя внутреннего сгорания открыло новые возможности в развитии общественных производственных возможностей и привело к глобальным изменениям в социально-экономических отношениях доминирующих в обществе.

Двигатель внутреннего сгорания. Современное общество уже не может нормально существовать без строительных машин, станков и аппаратов, автомобилей и самолетов, морских судов и дизельных генераторов.

Двигатель внутреннего сгорания. Это основа нашего домашнего очага. Это тепло в нашем доме и уют. Это хлеб и другие продукты на нашем столе каждый день.

 

Женский сайт Я самая красивая.рф (i-kiss.ru)

от автомобиля с ДВС до беспилотного транспорта

29 января 1886 года немецким изобретателем Карлом Бенцем был официально получен патент на первый в мире автомобиль с двигателем внутреннего сгорания.

В первое время изобретение величайшего немецкого инженера не вызывало особого интереса со стороны общественности, тем не менее, Benz Patent-Motorwagen заинтересовались автомобильные энтузиасты.

Несмотря на все технические несовершенства, установленный на автомобиле Бенца одноцилиндровый четырехтактный двигатель внутреннего сгорания заложил основы современного двигателестроения на многие годы вперед, а некоторые его элементы используются в производстве и по сей день.

Времена меняются, на смену классическим ДВС приходят более экологичные электромоторы, повсеместно внедряются альтернативные виды топлива, проводятся глобальные научные исследования в этой области. Все это было бы невозможно без той поистине новаторской разработки, которую представил миру Карл Бенц 135 лет назад.

Изобретение немецкого ученого легло в основу создания на базе нашего университета мощной научной школы. В 1933 году член-корреспондент АН СССР Николай Брилинг организовал в МАДИ кафедру «Автотракторные двигатели» (ныне – «Теплотехника и автотракторные двигатели»).

Сегодня кафедра представляет собой крупный научно-методический центр, аккумулировавший многолетний опыт научно-исследовательской и учебно-педагогической работы в области ДВС. Лаборатории кафедры оснащены самым современным оборудованием для компьютерного моделирования и экспериментальных исследований, проектирования и разработки новых двигателей, а также их диагностики.

Сотрудники еще одной кафедры МАДИ – «Электротехники и электрооборудования», в свою очередь, следуя самым актуальным трендам, решили идти в ногу со временем и создали экспериментальный электромобиль на базе Mazda RX-8, заменив традиционный двигатель внутреннего сгорания на бесконтактный тяговый электродвигатель-генератор переменного тока.

Кроме того, наш университет можно считать одним из пионеров по разработке автономных транспортных средств. Кафедры «Автомобили» и «Организация и безопасность движения» успешно реализуют свои научные проекты – создают беспилотники, некоторым их которых уже нашлось практическое применение.

В конце XIX века запатентованный автомобиль Бенца не мог похвастаться своей управляемостью, даже когда за рулем находился опытный водитель, а теперь мы учим автомобили ездить самостоятельно. То, что когда-то казалось невозможным, сегодня становится той реальностью, в которой живем мы с вами.

И все это благодаря тому, что когда-то давно, в далеком 1886 году, новатор Карл Бенц в буквальном смысле опередил время и, благодаря своей инновационной и непонятной многим разработке, прочно вписал свое имя в историю мирового автомобилестроения, создав огромный задел для научных исследований.

изобретение двигателей – тема научной статьи по сельскому хозяйству, лесному хозяйству, рыбному хозяйству читайте бесплатно текст научно-исследовательской работы в электронной библиотеке КиберЛенинка

Електротехніка. Визначні події. Славетні імена

УДК 621.3:621.43:537.311:910.4 М.И. Баранов

АНТОЛОГИЯ ВЫДАЮЩИХСЯ ДОСТИЖЕНИЙ В НАУКЕ И ТЕХНИКЕ.

ЧАСТЬ 14: ИЗОБРЕТЕНИЕ ДВИГАТЕЛЕЙ

Наведено короткий нарис з всесвітньої історії винаходу двигунів різного виду, що з’явилися енергетичним «серцем» для всіх транспортних засобів на нашій планеті.

Приведен краткий очерк из всемирной истории изобретения двигателей различного вида, явившихся энергетическим «сердцем» для всех транспортных средств на нашей планете.

ВВЕДЕНИЕ Движение, как известно, это «жизнь». Оно (движение) является «жизнью» не только для биологических объектов, но и для большинства технических объектов. Как привести в движение различного вида физическое тело, тот или иной технический объект? Как придать подобному движущемуся телу (объекту) или его части наибольшее ускорение и наивысшую скорость? Как преобразовать один вид движения технического объекта в другой? Как уменьшить при этом паразитные потери энергии и повысить коэффициент полезного действия (КПД) для движущегося объекта? Вот тот перечень основных вопросов, возникавших сотни лет тому назад и возникающих поныне перед учеными-механиками, инженерами и конструкторами, занимающихся разработкой и созданием новой техники. Из всемирной истории развития техники всем нам хорошо известно, что «рождение» подобных объектов в техносфере землян определяется потребностями человеческого общества. Главными из них в нашем мире были и остаются: 1) неуклонное прогрессивное развитие разных отраслей промышленности всех стран для удовлетворения все возрастающих человеческих потребностей; 2) защита государственных и частных интересов, включающих территориальную целостность стран, экономическую выгоду и интеллектуальную собственность. Начиная с древних времен (например, с периода проживания и деятельности в 287-212 гг. до н.э. великого древнегреческого учено-го-механика Архимеда), продолжая в средневековье (например, в период проживания и работы в 14521519 гг. великого итальянского ученого-мыслителя и изобретателя Леонардо да Винчи и в период жизни и активной творческой деятельности в 1642-1727 гг. великого английского ученого-механика Исаака Ньютона) и заканчивая современным временем, выдающиеся представители рода человеческого постоянно «бились» и «бьются» над совершенствованием и дальнейшим развитием технических объектов военного и общегражданского назначения [1-3]. Для всех этих объектов, перемещающихся по земле (под землей), по воде (под водой), в воздухе и безвоздушном пространстве (космосе) характерным является то, что все они в своем составе содержат энергетическое «сердце» — двигатель того или иного вида, приводящий в нужное движение их части или эти объекты в целом. На взгляд автора, интересной для читателя и актуальной в области истории техники представляется научно-историческая задача по рассмотрению эволюции (это слово происходит от латинского слова «еуо/ийо»

— «процесс развития» [4]) становления, непрерывного совершенствования и прогрессивного развития в технической сфере двигателей различных видов и типов.

1. ИЗОБРЕТЕНИЕ ПАРОВОГО ДВИГАТЕЛЯ Исторически известно, что еще великий флорентинец Леонардо да Винчи описал пушку, выстреливающую снарядами при помощи сил только от огня и воды [5]. Он предполагал, что медный ствол пушки с ядром, размещенный своим одним концом в условиях горячей печи, сможет выбросить снаряд, если в отсек сильно разогретого ствола за ядром впрыснуть воду. Леонардо да Винчи полагал, что вода при высокой температуре испарится очень быстро и, став паром и практически аналогом пороха, вытолкнет из такого ствола ядро с большой скоростью. Несмотря на заманчивость такой технической идеи и неоднократные попытки европейских военных инженеров (даже в 19м столетии), создать подобную боевую пушку не удалось никому. Тем не менее, в 1681 году французский ученый Дени Папен решил создать машину для откачки подземных (грунтовых) вод из шахт, применив при этом в качестве движущей силы вначале порох, а позже и водяной пар [5]. Так на свет появилась пароатмосферная машина, уже прогрессивно содержащая цилиндрический поршень. Основной недостаток машины Д. Папена заключался в том, что пар готовился внутри ее цилиндра. В усовершенствование этой машины большой вклад внесли английские изобретатели Томас Севери, в насосе которого (патент от 1698 года на первую в мире паровую машину) приготовление пара происходило вне его цилиндра в отдельном котле, и Томас Ньюкомен, который в 1705 году изобрел паровой насос с цилиндром и поршнем, а также известный российский изобретатель-самоучка и механик Иван Иванович Ползунов, создавший к 1766 году новую на то время паровую машину [1, 5]. Далее в 1768 году патент на первый паровой двигатель с конденсатором (охладителем пара) получает выдающийся английский механик Джеймс Уатт (1736-1819 гг.). Шли годы ив 1784 году Дж. Уатт, работая над усовершенствованием машины Т. Ньюкомена, построил универсальный паровой двигатель, пригодный для широкого промышленного использования в ткацкой и машиностроительной технике (рис. 1). В данном двигателе Дж. Уаттом был применен так называемый кривошипно-шатунный механизм, преобразовывающий возвратно-поступательное движение поршня рабочего цилиндра, обусловленное водяным паром, во вращательное движение колеса [5, 6]. Применив этот двигатель, Дж. Уатт для потребностей металлообработки создал первый паровой молот. Следует заметить, что после этих изобретений Дж. Уатта мировое развитие тепловых машин пошло стремительными темпами. Укажем, что серьезные изменения в тепловые машины Дж. Уатта были вне© М.И. Баранов

сены лишь в середине 19-го столетия английским изобретателем Д Несмитом (1808-1890 гг.) [1, 5]. К 1843 году он создал кузнечный молот, в котором паровая машина и ударник были объединены в один механизм (рис. 2) [1, 6].

Рис. 1. Первый паровой двигатель выдающегося английского механика и изобретателя Джеймса Уатта [1]

Отметим, что паровой молот Д Несмита произвел, образно говоря, техническую «революцию» в области машиностроения. Этот вид кузнечного оборудования с использованием парового двигателя в 19-ом веке получил широкое внедрение по всему миру [1, 6].

Рис. 2. Мощный паровой молот разработки конца 19-го века известного английского изобретателя Джеймса Несмита [1]

Поэтому можно обоснованно считать, что исторически все машины практически пришли к нам из горной, текстильной и металлообрабатывающей индустрий, использующих силу горячего водяного пара.

2. ИЗОБРЕТЕНИЕ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ

Поскольку возможности парового двигателя были ограниченными, а его энергетические показатели не высокими (при низком КПД, не превышающем 10 %, он был к тому же еще и громоздким), то изобретатели всего мира продолжали поиски более эффективных двигателей, использующих иные, чем горячий пар источники энергии. История создания двигателя внутреннего сгорания (ДВС) уходит своими корнями к началу 19-го столетия [7]. В 1801 году французский инженер Филипп Лебон (1769-1804 гг.) получил патент на конструкцию газового двигателя, работающего на сгорании в камере открытого им светильного газа и который можно считать плавным переходом от

парового двигателя к ДВС [8]. Реализовать ему самому этот переход, к нашему большому сожалению, не удалось из-за своей трагической гибели в 1804 году. Необходимо отметить, что в газовом двигателе Ф. Лебона уже имелись камера смешивания и два компрессора (один для подачи в эту камеру сжиженного воздуха, а другой — для подачи в нее сжиженного светильного газа от газогенератора) [8]. После указанного смешивания этих газов образовавшаяся газовоз -душная смесь поступала в рабочий цилиндр двигателя, где вспыхивала и выделяла энергию, приводящую его поршень в движение. Далее, в 1860 году бельгийский механик Жан Этьен Ленуар (1822-1900 гг.) построил оригинальный газовый двигатель, в котором воспламенение в его рабочей камере горючей смеси происходило при помощи электрической искры [7, 9]. Так на свет впервые появился первый двухтактный двигатель внутреннего сгорания (рис. 3), который был прост в эксплуатации, имел небольшие габаритные размеры и вес. Однако, из-за своего низкого КПД (не более 5 % [9]) он не получил широкого коммерческого успеха и технического применения. В истории техники Ж.Э. Ленуар оказался лишь одним из тех людей, кто приближал прогресс на нашей планете и не получал при этом, как правило, ни славы, ни денег [9].

Рис. 3. Первый двухтактный ДВС известного бельгийского изобретателя Жан Этьен Ленуара (модель 1862 года) [9]

В дальнейшем за усовершенствование этого типа ДВС (двигателя Ленуара) взялся известный немецкий инженер Николаус Август Отто (1832-1891 гг.), который вскоре довел его КПД до 15 %. Этот показатель превосходил КПД самых лучших паровых машин того времени. В 1866 году Н.А. Отто получил патент на двухтактный ДВС, работающий на светильном газе (рис. 4) [10, 11]. Главная техническая находка («изюминка») Н.А. Отто заключалась в том, что в конструкции этого двухтактного газового двигателя с кривошипо-шатунным механизмом химическая энергия сгоревшего в его цилиндре газообразного топлива использовалась с наибольшей на то время полнотой. В 1867 году этот двухтактный двигатель получил золотую медаль на парижской Всемирной ярмарке [11].

Но самым революционным шагом в мировом дви-гателестроении стало очередное изобретение окрыленного первым успехом Н.А. Отто четырёхтактного цикла работы двигателя («цикла Отто»: впуск, сжатие, рабочий ход, выпуск), сделанное им в 1876 году и которое и поныне лежит в основе работы подавляющего большинства ДВС [11]. Благодаря этому циклу двигатель Отто стал в пять раз экономичнее двигателя Ленуара [10]. К 1897 году двигателестроительной компанией «Отто и Ко» было выпущено до 42 тысяч таких ДВС разной мощности (рис. 5). Более массовое производство запатентованного Н.А. Отто четырёхтактного ДВС сдержи-

валось отсутствием на то время в промышленно развитых странах необходимых мощностей для производства светильного газа.

Рис. 4. Музейный экспонат первого двухтактного ДВС известного немецкого изобретателя-механика Н.А. Отто [11]

Рис. 5. Музейный экспонат первого четырехтактного ДВС известного немецкого инженера-механика Н.А. Огто [11]

В этой связи в мире активно искали новые виды горючего для ДВС. Некоторые изобретатели пытались применить в качестве газа для ДВС пары жидкого топлива. Еще в 1872 году американский инженер Дж Брайтон пытался использовать в этом качестве керосин. Однако керосин плохо испарялся и тогда Дж. Брайтон перешёл к более лёгкому нефтепродукту — бензину [10]. Для того, чтобы ДВС на жидком топливе мог успешно конкурировать с газовым двигателем, необходимо было создать специальное устройство для испарения бензина, получения горючей смеси из этого топлива и воздуха и ее подачи в камеру ДВС.

Дальнейший прогресс в мировом двигателестрое-нии был связан с такими весьма известными в современном автомобильном мире именами немецких инже-неров-механиков как Готтлиб Даймлер и Вильгельм Майбах (рис. 6), прославившимися созданием в конце 19-го века работоспособного бензинового ДВС [10].

Рис. 6. Известные немецкие изобретатели в области двигателестроения Готтлиб Даймлер и Вильгельм Майбах [10]

Следует указать, что процесс испарения жидкого топлива в первых бензиновых двигателях указанных немецких изобретателей оставлял желать лучшего. Их одноцилиндровый бензиновый ДВС от 1885 года, со-

держащий вертикально установленный в рабочем цилиндре поршень и рядом расположенный упрощенный смеситель-дозатор в его топливной системе, был компактным, легким и одновременно достаточно мощным для того, чтобы двигать пассажирский экипаж. Считается, что именно этот ДВС является прототипом современного бензинового двигателя с вертикальными рабочими цилиндрами и топливом, вводимым в его камеру сгорания уже через карбюратор [9].

Заметим, что карбюратором (это слово происходит от французского слова «carburateur» — «смеситель-дозатор» [4]) называется устройство, предназначенное для внешнего смесеобразования горючей смеси (из топлива и воздуха) в топливной системе ДВС, работающего на легком жидком топливе (например, на бензине, керосине и др. видах топлива). Изобретение карбюратора стало важным этапом в двигателестроении. Создателем его считается венгерский инженер Донатан Банки [10]. Только в 1893 году он получил патент на карбюратор с жиклёром, который стал прообразом для всех карбюраторов. На рис. 7 приведен внешний вид современного карбюратора. Укажем, что Д. Банки в своем патенте предлагал не испарять бензин, а подавать его в рабочий цилиндр в распыленном жиклёром состоянии. Испарение же по его идее должно протекать в самом цилиндре под действием температуры и давления. Распыливание струи бензина происходило в потоке воздуха, причём количество всасываемого топлива было пропорционально секундному расходу воздуха. Отметим, что в бензиновых карбюраторных ДВС нормальная горючая смесь обычно состоит по массе примерно из 15 частей воздуха и 1 части паров бензина. Двигатель может работать как на обеднённой горючей смеси (пропорция «воздух-топливо» равна 18:1), так и обогащенной смеси (указаннаяпропорция составляет 12:1) [10, 11].

Рис. 7. Общий вид современного карбюратора для ДВС [10]

Слишком «богатая» или слишком «бедная» топливная смесь вызывает резкое уменьшение скорости ее сгорания в камере ДВС и поэтому такая горючая смесь не может обеспечить нормального протекания процесса ее сгорания. Укажем, что кроме карбюраторного метода смесеобразования для ДВС существует и другой способ подготовки горючей смеси, основанный на впрыске бензина во впускной коллектор или непосредственно в рабочие цилиндры двигателя при помощи распыляющих форсунок (инжектора) [9].ду несколькими людьми: Ж.Э. Ленуаром, Н.А. Отто и Г. Даймлером. Причем, из всех этих людей инженер-механик Н.А. Отто сделал самый значительный вклад (рис. 8) [10].

Рис. 8. Основные создателипервыхв мире работоспособных ДВС — бельгийский инженер Ж.Э. Ленуар (слева) и немецкий механик-изобретатель Н.А. Отто (справа) [10, 11]

Двигатель Ж.Э. Ленуара (рис. 3) по сути своей не был ни достаточно мощным, ни достаточно эффективным для того, чтобы приводить, например, автомобиль в движение. Двигатель же H.A. Отто (рис. 4, 5) обеспечивал все необходимые для этого технические параметры. Поэтому именно немецкий инженер-механик H.A. Отто является одним из истинных создателей ДВС, в котором химическая энергия используемого в нем жидкого или газообразного углеводородного топлива, сгорающего в рабочей камере высокого давления этого вида тепловой машины, преобразуется в механическую работу быстро вращающегося металлического коленчатого вала двигателя. На рис. 9 представлен общий вид современного мощного ДВС.

Рис. 9. Внешний вид современного поршневого ДВС [12]

Из рис. 3-5 и 9 и данных из [6-12] видно, что как далеко по конструкции и своим техническим характеристикам «ушли» вперед современные ДВС различного типа (например, бензиновые карбюраторные, бензиновые инжекторные, дизельные, газовые, газодизельные и роторно-поршневые [10]) в сравнении с первыми конструкциями двигателей этого вида. Причем, «ушли» в технологии изготовления, эффективности и мощности ДВС, но не по своим не изменившимся до наших дней рабочим тактам («циклу Отто»), которые так изменили нас и весь наш мир (рис. 10).

Рис. 10. Схематическое изображениерабочего цикла современного четырехтактного карбюраторного ДВС [12]

Если первые ДВС имели мощность не более 5 л.с. (до 3,7 кВт), то в настоящее время максимальная

мощность четырехтактного карбюраторного ДВС уже составляет до 800 л.с. (до 590 кВт) [12]. Современные авиационные поршневые двигатели с непосредственным впрыском авиабензина и искровым зажиганием их горючей смеси развивают мощность до 1500 л.с. (до 1100 кВт). Заметим, что в конце сгорания горючей смеси давление в рабочем цилиндре карбюраторного ДВС может достигать до 60 атм, а температура — до 2200 °С [12]. Кроме того, рабочий цикл современного карбюраторного ДВС, осуществляемый за 4-е хода поршня диаметром не более 150 мм (при его большем диаметре возрастает склонность к детонации горючей смеси [10]), может быть осуществлен при большой частоте вращения коленчатого вала двигателя (от 3000 до 7000 об/мин). Что касается ДВС гоночных автомобилей и мотоциклов, то их валы могут развивать скорость вращения в 15000 об/мин и более [12].

Важным практическим применением ДВС является их использование, прежде всего, для приведения в движение разных автомобилей. Следует особо подчеркнуть, что энергетическим «сердцем» 99,9 % всех современных автомобилей при их общем количестве в сотни миллионов штук, несмотря на сильное влияние электрификации во многих промышленных отраслях и на автотехнику, по-прежнему остается ДВС [12].

3. ИЗОБРЕТЕНИЕ ДИЗЕЛЬНОГО ДВИГАТЕЛЯ

Хотя этот вид двигателя и относится к ДВС, однако учитывая его важность, прогрессивность и широкую распространенность в современном обществе, будет разумным и целесообразным выделить нам краткую историю его создания в отдельный раздел. Изобретателем этого типа двигателя оказался выдающийся немецкий инженер-механик Рудольф Дизель (1858-1913 гг.) [13]. Для всех нас, работающих в технической сфере, и по сей день, интересны мысли Р. Дизеля по поводу изобретательской деятельности инженера [13]: «Изобретение никогда не было лишь продуктом творческого воображения: оно представляет собой результат борьбы между отвлеченной мыслью и материальным миром. Изобретателем история техники считает не того, кто с той или иной степенью определенности высказывал раньше подобные же мысли и идеи, а того, кто осуществил свою идею, мелькнувшую, может быть, в уме множества других людей». Этот творческий человек с широким кругозором и отмеченным выше философским миропониманием технической сферы в конце 19-го столетия предложил новый принцип построения ДВС, базирующийся на законах классической физики. В двигателе Дизеля (дизельном двигателе) сильно сжимаемая воспламеняющаяся смесь жидкого углеводородного топлива с воздухом, содержащим по массе в своем составе до 21 % кислорода (окислителя топлива), вспыхивает без инициирующей электрической искры. Напомним, что, например, в современном карбюраторном бензиновом ДВС для инициирования процесса сгорания топлива в рабочем цилиндре двигателя применяется электрическая искра от ввинчиваемой в головку рабочего цилиндра свечи, на коаксиальные металлические электроды которой в определенный момент времени рабочего цикла подается высокое импульсное электрическое напряжение величиной до 15 кВ [12]. Для работающего дизельного двигателя необходимости в подобной электрической ис-

кре нет. Связано это с тем, что при сильном сжатии поршнем цилиндра мелкодисперсной горючей смеси в дизельном ДВС резко повышается ее температура, которая оказывается достаточной для самовоспламенения этой смеси. Принцип построения ДВС, предложенный и запатентованный им в 1892 году (рис. 11), позволил упростить работу ДВС, повысить надежность его функционирования и создать в будущем мощные ДВС для таких транспортных средств как тепловозов, речных и морских надводных и подводных кораблей [12].

Рис. 12. Первый стационарный одноцилиндровый дизельный двигатель типа БМ-12 мощностью 12 л.с. (около 9 кВт) разработки 19-го столетия выдающегося немецкого изобретателя Р. Дизеля (Германия, г. Аугсбург, 1893 год) [13]

В 1897 году Р. Дизелем (рис. 13) был создан двигатель с вертикальным цилиндром мощностью 20 л.с. (около 15 кВт), имевший термический КПД, равный около 29 %. Расход топлива (керосина) в нем составлял до 260 г на 1 л.с. в час [14]. Этот двигатель являлся самым лучшим силовым агрегатом того времени.

Рис. 11. Патент № 67207 Германии, выданный 23.02.1893 г.

выдающемуся немецкому инженеру-механику Р. Дизелю на названный в его честь дизельный двигатель [13]

Начинал в конце 19-го века выдающийся немецкий инженер-механик Р. Дизель свои воплощенные в «металл» оригинальные технические разработки с одноцилиндровых ДВС малой мощности (рис. 12) [13].

Рис. 13. Создатель первого в мире одноцилиндрового дизельного двигателя, выдающийся немецкий ученый, доктор-инженер и изобретатель Рудольф Дизель [14]

Отметим, что сейчас топливо в дизельном двигателе впрыскивается в его рабочий цилиндр под высоким давлением (как правило, при его уровне от 100 до 300 атм) через форсунку в строго определенный момент, соответствующий недоходу поршня до своей верхней мертвой точки (рис. 10). Горючая смесь образуется непосредственно в его цилиндре по мере впрыска дизельного топлива. Поэтому дизель является ДВС с внутренним смесеобразованием. Движение поршня внутри цилиндра вызывает нагрев и последующее воспламенение топливовоздушной смеси (коэффициент сжатия при этом в цилиндре может достигать до 21). КПД современного дизельного двигателя достигает до 35 % (при использовании в нем турбонаддува он доходит до 44 %) [13]. Дизельные двигатели являются низкооборотными и характеризуются высоким значением вращающего момента на коленчатом валу двигателя. Дополнительным преимуществом дизельного двигателя является то, что, в отличие от двигателей с принудительным зажиганием их горючей смеси, он при работе не нуждается в электрическом поджиге своей горючей смеси (в автомобильных дизельных двигателях бортовая электрическая система используется только на этапе его первоначального запуска) и, как следствие этого, он менее «боится» попадания в него воды. Заметим, что первые образцы дизельного двигателя в мастерской Р. Дизеля работали на угольной пыли. Позже из-за высоких абразивных свойств как самой этой пыли, так и золы, получающейся при сгорании в рабочем цилиндре угольной пыли, перешли на использование в дизелях тяжелых нефтяных фракций [14]. В 1900 году на Всемирной торгово-промышленной выставке в г. Париже двигатель Дизеля получил Гран-при. С 1908 года Р. Дизель приступил к созданию дизельного двигателя, пригодного для работы в составе автомобиля. Первые попытки такой разработки оказались безуспешными. Трагическая гибель Р. Дизеля на море, произошедшая 29 сентября 1913 года, прервала все его эти работы.

Дальнейшей работой над дизельным мотором занялся инженер Проспер Леранж, работавший на немецком заводе «Benz & Cie». В 1909 году он получил патент на дизельный двигатель с предкамерой [14]. В 20-е годы 20-го века немецкий инженер Роберт

Бош усовершенствовал для дизеля встроенный топливный насос высокого давления, который широко применяется и в наше время. Эти усовершенствования и открыли «дорогу» дизельному двигателю на автомобильный рынок. Первый грузовик, оснащенный дизельным двигателем, был выпущен в Германии в 1923 году. Это был 5-ти тонный «Benz 5K3», в котором был установлен 4-х цилиндровый дизельный двигатель с предкамерой объемом 8,8 л [14]. Он развивал мощность до 50 л.с. (около 37 кВт) при скорости вращения вала в 1000 об/мин. Дизельные двигатели получили сейчас широкое распространение в мире и, в первую очередь, на железной дороге и в судостроении. Например, локомотивы (тепловозы), использующие дизельный двигатель, являются основным видом транспорта на неэлектрифицированных участках железной дороги. Они конкурируют с электровозами за счёт своей автономности, перевозя при этом, к примеру, в Российской Федерации до 40 % грузов и пассажиров и выполняют до 98 % маневровой работы на дороге [14]. Сейчас редкая модель ДВС представляется на коммерческом рынке двигателей без дизельной модификации. Архивно-исторические данные свидетельствуют о том, что создатель этого силового агрегата Рудольф Дизель шел к своему техническому открытию весьма тернистым путем, упорно преодолевая постоянные трудности и недоверие окружающих. Кстати, разработанная им инженерная теория ДВС стала основой для создания современных двигателей с воспламенением смеси от сжатия — дизелей [14].

На рис. 14 представлены внешние виды современных дизельных двигателей, широко используемых в качестве силовых агрегатов автомобилей и судов.

Рис. 14. Внешние виды автомобильного (слева без турбонаддува) и судового (справа с турбонаддувом) мощных дизельных двигателей разработки конца 20-го столетия [14, 15]

Для связи времен и поколений отечественных дизелестроителей укажем, что в конце 2011 года в НТУ «ХПИ» прошло торжественное собрание научнотехнической общественности, посвященное 100-летию дизелестроения в Украине [16]. Вызвано это было тем закономерным фактом, что история дизелестроения нашей страны неразрывно связана с Харьковским практическим технологическим институтом, основанным в 1885 году, и нынешним его правопреемником НТУ «ХПИ». Именно в стенах этого харьковского высшего учебного заведения была основана украинская школа дизелестроения под научным руководством разработчика первых отечественных дизелей и первого заведующего кафедрой ДВС в ХПИ и ХАИ, д.т.н., проф. В.Т. Цветкова. Здесь следует отметить и тот немаловажный факт, что среди прославив-

шихся выпускников-механиков ХПИ в области авиадвигателей и дизелестроения был основатель и генеральный конструктор широко известного во всем мире Запорожского машиностроительного конструкторского бюро «Прогресс» Александр Георгиевич Ивченко. Отметим, что в настоящее время кафедра ДВС НТУ «ХПИ» под руководством ее нынешнего заведующего, проректора этого университета по науке, лауреата Государственной премии Украины в области науки техники, д.т.н., проф. А.П. Марченко успешно продолжает дальнейшее развитие необходимого нашему обществу двигателестроения в Украине [17].

4. ИЗОБРЕТЕНИЕ РОТОРНО-ПОРШНЕВОГО ДВИГАТЕЛЯ Неутомимые изобретатели мира продолжали и продолжают искать альтернативу традиционному ДВС. Одним из них оказался выдающийся немецкий механик-самоучка ФеликсГенрих Ванкель (1902-1988 гг.) [15, 18]. Еще в молодости Ф.Г. Ванкель (рис. 15) понял, что все четыре такта работы обычного ДВС (впрыск, сжатие, сгорание и выхлоп) можно осуществить при круговом вращении ротора-поршня. В 1934 году он создал первый опытный образец роторно-поршневого двигателя (РПД) и получил на него патент [15]. В это время он сконструировал новые клапаны и камеры сгорания для своего экзотического мотора, создал несколько различных вариантов его исполнения и разработал классификацию кинематических схем различных РПД [18]. Понадобились десятилетия для доводки и производства этого типа ДВС.

Рис. 15. Выдающийся немецкий изобретатель современных ДВС роторно-поршневого типа — Феликс Ванкель с трехвершинным ротором своего оригинального двигателя [15]

Только в 1957 году первый РПД был установлен немецкой компанией «NSU Motorenwerke AG» на автомобиль марки «Prinz» [15]. Испытаний этот РПД типа DKM-54 тогда не выдержал, но доказал свою принципиальную работоспособность, открыл направления для своей дальнейшей доработки и продемонстрировал колоссальный потенциал «роторников». В чем же заключается принципиальное отличие РПД от обычного ДВС? В том, что в РПД применен вращающийся ротор (поршень), размещенный внутри цилиндра, поверхность которого выполнена по эпитрохоиде (рис. 16) [15, 18]. У станов ленный на валу треугольный ротор жестко соединён с зубчатым колесом, которое входит в зацепление с неподвижной шестерней. Ротор с зубчатым колесом как бы обкатывается вокруг этой шестерни. Его (ротора) треугольные грани при этом скользят по внутренней эпитрохоидальной поверхности цилиндра и отсекают переменные объёмы камер сжатия и расширения смеси в рабочем цилиндре РПД.

Рис. 16. Внешнийвид роторно-поршневого двигателя Ванкеля с разобранным овальным цилиндром этого ДВС [15]

Подобная конструкция РПД с искровым зажиганием позволяет осуществить 4-х тактный цикл без применения специального механизма газораспределения в цилиндре. Герметизация камер в этом двигателе обеспечивается радиальными и торцевыми уплотнительными пластинами, прижимаемыми к цилиндру центробежными силами, давлением газа и ленточными пружинами. Смесеобразование, зажигание, смазка, охлаждение и запуск в РПД принципиально такие же, как и у обычного поршневого ДВС [15, 18]. Таким образом, функцию поршня в РПД выполняет трехвершинный ротор, преобразующий силу давления газов от сгорания горючей смеси во вращательное движение эксцентрикового вала. Движение ротора относительно статора (наружного корпуса цилиндра) обеспечивается парой шестерен, одна из которых закреплена на роторе, а вторая на боковой крышке статора (цилиндра). За полный оборот трехвершинного ротора в каждой из камер двигателя совершается полный четырехтактный цикл. Газообмен регулируется вершиной ротора при прохождении ее через впускное и выпускное окна. Крутящий момент в РПД получается в результате действия газовых сил через трехгранный ротор на эксцентрик вала. Повышенный интерес к РПД в 70-х годах прошлого века был вызван их следующими существенными потенциальными преимуществами по сравнению с обычными поршневыми двигателями сравнимого класса по мощности [18]: 1) меньшим на 35-40 % общим количеством деталей; 2) меньшим удельным весом при одинаковых материалах и соответственно габаритным объемом; 3) меньшей стоимостью; 4) плавностью работы в результате отсутствия возвратнопоступательно движущихся частей; 5) возможностью потребления низкооктанового бензина; 6) более низким уровнем шумов и вибраций. Отметим, что автомобилестроительным компаниям США, Японии и ряда европейских стран в результате длительно проделанной ими огромной научно-исследовательской и опытно-конструкторской работы удалось решить многие сложные технические задачи на пути создания работоспособного надежного РПД и выйти в настоящее время на этап промышленного производства этого типа двигателей [15, 18]. При этом нам не следует забывать и об основных недостатках РПД [18]: 1) неэффективный процесс сгорания горючей смеси в камере цилиндра и связанный с этим повышенный расход топлива и уровень токсичности отработанных газов; 2) высокий расход масла для смазки его трущихся частей; 3) невоз-

можность его выпуска на производственных площадях, предназначенных для производства традиционных ДВС; 4) переход на выпуск РПД требует замены подавляющего большинства технологического оборудования в цехах.

5. ИЗОБРЕТЕНИЕ ЭЛЕКТРОДВИГАТЕЛЯ

Считается, что первый работоспособный образец электрического двигателя (ЭД) с круговым вращением вала якоря появился в 1834 году. Его создателем является известный российский электротехник Борис Якоби (1801-1874 гг.) [3, 19, 20]. В 1860 году итальянским изобретателем Антонио Пачинотти (1841-1912 гг.) был построен ЭД постоянного электрического тока с коллектором [19, 20]. Принцип работы ЭД заключается во взаимодействии магнитных полей его якоря и статора, содержащих распределенные вдоль их круговых периметров электромагниты (рис. 17).

ии

гл

Рис. 17. Упрощенная схема построения и работы ЭД [21]

При подведении электрического тока через графитовые щетки и коллектор к многовитковым катушкам круглого якоря, размещенного на подшипниках внутри статора ЭД, электродинамическое взаимодействие образующихся магнитных полей катушек якоря и ранее существовавшего магнитного поля электромагнитов статора вызывает появление вращающегося момента на валу якоря. Отключение электрического тока катушек якоря ЭД приводит к остановке якоря и соответственно вала двигателя. Укажем, что 1867 год ознаменовался открытием принципа самовозбуждения в электрических машинах, сделанным видным немецким электротехником и изобретателем Вернером Сименсом (1816-1892 гг.). Это дало возможность заменить в ЭД стальные магниты на электромагниты. В 1869 году двигатель Пачинотти был усовершенствован французским изобретателем Зенобом Граммом (1826-1901 гг.), который создал кольцевой якорь из шихтованного железа (из плотно прилегающих друг к другу тонких металлических пластин) [3, 19]. Позже в 1873 году немецкий электротехник Фридрих Хефнер-Альтенек (1845-1904 гг.) данный якорь заменил на барабанный, существенно упростивший конструкцию ЭД и заметно увеличивший его мощность [3, 19]. Важный физико-технический прорыв в области электрических машин был совершен гениальным хорватско-американским электротехником Николой Тесла (1856-1943 гг.), открывшим в 1888 году явление вращающегося магнитного поля [3, 19]. Это привело к созданию им серии многофазных (в большей части двухфазных) электродвигателей. В 1890 году выдающимся немецко-российским электротехником Михаилом Доливо-Добровольским (1862-1919 гг.) был изоб-

ретен трехфазный асинхронный ЭД переменного тока, содержащий короткозамкнутую обмотку якоря и распределенные по статору фазные обмотки [19, 20]. Поэтому можно обоснованно говорить о том, что к концу 19-го века в мире появились первые промышленные образцы ЭД. С появлением в 1870 году надежного источника постоянного электрического тока в виде кислотной аккумуляторной батареи их (электродвигатели) сразу стали устанавливать на боевые подводные лодки во многих странах [21]. Далее ЭД нашли широкое применение в машиностроительной и металлообрабатывающей отраслях промышленности, авиационной, ракетной и бытовой технике и на транспорте. На рис. 18 приведен общий вид современного ЭД типа Ш1МЕТ.

Рис. 18. Внешний вид современного общепромышленного электродвигателя типа ИМЕТ мощностью до 11 кВт [22]

Нам следует констатировать, что одним из важных достижений в области науки и техники конца 19го века стало изобретение электродвигателя, преобразующего электрическую энергию постоянного или переменного тока якоря и статора в механическую энергию быстро вращающегося (до нескольких тысяч оборотов в минуту) металлического вала ЭД. Сейчас это удобное и экономичное электротехническое устройство различной мощности стало важнейшим элементом во всех сферах человеческой деятельности, начиная с производства и заканчивая бытом людей.

6. ИЗОБРЕТЕНИЕ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ

Газотурбинный двигатель (ГТД) или как его еще иначе называют турбореактивный двигатель (ТРД) является тепловым двигателем, в котором газ сжимается и нагревается, а затем энергия сжатого и разогретого газа преобразуется в механическую работу на осевом валу газовой турбины [23]. В отличие от поршневого двигателя, в ГТД все газодинамические процессы происходят в потоке быстро движущихся газов. Сжатый атмосферный воздух из компрессора высокого давления поступает в камеру сгорания ГТД (рис. 19), в которую подаётся топливо. Сгорая, это топливо образует большое количество газообразных продуктов сгорания, вращающих под высоким давлением турбину ГТД и вырывающихся из его сопла.

В качестве топлива ГТД (рис. 20) могут использоваться любые горючие вещества, которые можно диспергировать: бензин, керосин, дизельное топливо, мазут, природный газ, судовое топливо, спирт и измельченный уголь. ГТД (ТРД) имеют самую большую удельную мощность среди ДВС (до 6 кВт/кг) [23].

Турбина ГТД реактивного самолета врашается со скоростью до 104 об/мин [23]. Чем выше в ГТД температура сгорания его топлива, тем выше КПД такого двига-

теля. 2 г а s

Э 6

Рис. 19. Схематическое построение газотурбинного двигателя в его продольном разрезе (1 — заборник воздуха; 2 — компрессор низкого давления; 3 — компрессор высокого давления;

4 — камера сгорания; 5 — расширитель рабочего тела в турбине и сопле; 6 — горячая зона; 7 — турбина; 8 — зона входа первичного воздуха в камеру сгорания; 9 — холодная зона;

10 — входное устройство воздухозаборника) [23]

Рис. 20. Внешний вид американского турбореактивного двигателя типа GEJ85 (в продольном разрезе) производства компании «General Electric» (США) [23]

Рис. 21. Форсажная камера американского турбореактивного двигателя типа GEJ79 (вид со стороны сопла двигателя) производства компании «General Electric» (США) [23]

Из данных рис. 21 видно, что в торце форсажной камеры ТРД находится стабилизатор горения диспергированного горючего с установленными на нём топлив -ными форсунками, за которым находится турбина рассматриваемого двигателя. Применение форсажной камеры обеспечивает увеличение тяги в ГТД до 50 %, но расход топлива при этом резко возрастает. Отметим, что ТРД большинства боевых самолётов, летающих на сверхзвуковых скоростях, оборудуются регулирующими направление вектора тяги соплами (рис. 22). Укажем и то, что для реактивных самолетов мира 4-го поколения (например, для МиГ-29, Су-27 и F-16) температура сжатого газа перед турбиной ГТД (например, для типа РД-33, АЛ-31Фи F-404) составляет до 1400 °С, а степень его сжатия достигает 25 [23].

Рис. 22. Внешний вид регулируемого сопла советского форсированного турбореактивного двигателя типа АЛ-21 [23]

С учетом огромных термодинамических нагрузок, действующих на элементы ГТД, рабочие лопатки его турбины, начиная с 4-го поколения, выполняются из охлаждаемых монокристаллических сплавов [23].

7. ИЗОБРЕТЕНИЕ ТУРБОВИНТОВОГО И ТУРБОВЕНТИЛЯТОРНОГО ДВИГАТЕЛЕЙ В турбовинтовом двигателе (ТВД), являющемся одной из разновидностью ГТД, основное тяговое усилие обеспечивает впереди расположенный воздушный многолопастный винт (рис. 23), соединённый через редуктор с осевым валом турбокомпрессора ТВД [23]. ТВД более экономичны на малых скоростях полёта чем ГТД и поэтому они широко используются для самолётов, имеющих большую грузоподъёмность и дальность полёта. При этом крейсерская скорость самолётов гражданской и военной авиации, оснащённых ТВД, составляет от 600 до 800 км/ч [23]. С ростом скорости полёта самолета эффективность воздушного винта в ТВД уменьшается. В этой связи чаще всего ТВД применяется в авиации, обслуживающей местные воздушные перевозки людей и грузов.

Рис. 23. Внешний вид российского натурного образца современного мощного турбовинтового двигателя [23]

Турбовентиляторный реактивный двигатель (ТВРД) является подвидом ТРД с высокой степенью двухконтурности. В ТВРД (рис. 24) компрессор низкого давления преобразуется в вентилятор, отличающийся от подобного компрессора меньшим числом ступеней и большим диаметром. В ТВРД горячая струя газов практически не смешивается с холодной.

Главным достоинством ТВРД является их высокая экономичность. Основные недостатки — большие масса и габариты [23]. Область применения таких двигателей — дальне- и среднемагистральные коммерческие авиалайнеры и военно-транспортная авиация.

8. ИЗОБРЕТЕНИЕ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ

Ракетный двигатель (РД) является на сегодня практически единственным типом двигателя, хорошо освоенным специалистами ракетно-космической отрасли для вывода полезной нагрузки на орбиту искус-

ственных спутников Земли и применения в условиях безвоздушного космического пространства [24]. Сила тяги в РД (рис. 25) возникает в результате преобразования исходной энергии топлива в кинетическую энергию реактивной струи и самого рабочего тела ракеты. В зависимости от вида энергии, преобразующейся в кинетическую энергию реактивной струи и рабочего тела, различают химические ракетные двигатели, ядерные (термоядерные) ракетные двигатели и электрические ракетные двигатели [24]. Наиболее распространенным химическим РД является жидкостной ракетный двигатель (ЖРД), в котором на основе экзотермической химической реакции горючего и окислителя, именуемых вместе топливом, образующиеся продукты их сгорания нагреваются в камере сгорания РД до высоких температур и при своем расширении разгоняются в сверхзвуковом сопле этого РД и далее с огромной скоростью истекают из него.

Рис. 24. Внешний вид американского турбовентиляторного реактивного двигателя типа CFM56-5C производства компании «General Electric» (США) [23]

Рис. 25. Советский жидкостной ракетный двигатель типа РД-107 для космического корабля «Восток», вывившего на околоземную орбиту в 1957 году первый в истории Земли искусственный спутник ив 1961 году первого в мире человека в космос [1, 24]

Создателями первых работоспособных ЖРД оказались выдающиеся немецкие и советские конструктора в лице Вернера фон Брауна и В.П. Глушко (рис. 26) [1, 24]. Следует указать, что созданию совершенных образцов РД предшествовала огромная работа многочисленных коллективов двигателестроителей. Отметим, что в настоящее время для ЖРД мощных

ракетоносителей в качестве горючего используется токсичный гептил, а в виде его окислителя — тетраоксид диазота (К204) [24]. На рис. 27 запечатлен старт американского многоразового космического корабля «Шаттл», использующего боковые твердотопливные ракетные двигатели (ТТРД) и маршевые ЖРД [24].

Рис. 26. Выдающийся конструктор ракетных двигателей, академик АН СССР Валентин Петрович Глушко [25]

Укажем, что удельный импульс для ЖРД (например, для типа РД-170) достигает 4500 с, а тяга составляет свыше 800 тс [24]. По совокупности этих свойств ЖРД предпочтительны в качестве маршевых двигателей ракетоносителей космических аппаратов.

Рис. 27. Старт с космодрома многоразового космического корабля «Шаттл» с тягой ТТРД свыше 1300 тс (США) [24]

На рис. 28 приведен предназначенный для полётов в земной стратосфере новый летательный аппарат (ЛА) США, работающий на скоростях до 5М (до 5500 км/ч) и имеющий прямоточный воздушный РД [25].

Рис. 28. Гиперзвуковой прямоточный воздушно-реактивный двигатель, установленный на экспериментальном гиперзвуковом летательном аппарате ЫАБА типаХ-43 (США) [25]

9. ИЗОБРЕТЕНИЕ ЯДЕРНОГО И ТЕРМОЯДЕРНОГО РАКЕТНЫХ ДВИГАТЕЛЕЙ Ядерный (ЯРД) или термоядерный (ТЯРД) ракетные двигатели являются разновидностью РД, которые используют энергию деления или синтеза ядер атомов для создания в них реактивной тяги [26]. Они бывают реактивными (нагрев рабочего тела осуществляется в ядерном (термоядерном) реакторе, а вывод перегретого в них газа — через сопло РД) и импульсными (нагрев рабочего тела выполняется за счет ядерных взрывов супермалой мощности) [26]. Поэто-

му традиционный ЯРД (рис. 29) представляет собой компактную конструкцию, состоящую из малогабаритного ядерного реактора, системы подачи рабочего тела-газа (как правило, водорода [26]) и сопла РД.

Согласно [26] существуют различные конструкции ЯРД (твёрдофазные, жидкофазные и газофазные), имеющие различное агрегатное состояние ядерного топлива в активной зоне их реакторов — твёрдое, расплав или высокотемпературный газ (либо плазму). ЯРД активно разрабатывались и испытывались с середины 1950-х годов как в СССР (например, типа РД-0410), так и в США (например, типа МЕЯУА). Подобные исследования ведутся и в настоящее время [26]. Укажем, что основу ЯРД типа РД-0410 с тягой в 3,6 тс составлял ядерный реактор типа ИР-100 с топливными элементами из твердого раствора карбида урана и карбида циркония [26]. Температура его водорода достигала 3000 К при мощности реактора до 170 МВт.

Рис. 29. Первый советский ядерный ракетный двигатель типа РД-0410, примененный в космических аппаратах [26]

10. ИЗОБРЕТЕНИЕ ЭЛЕКТРИЧЕСКИХ РАКЕТНЫХ ДВИГАТЕЛЕЙ В электрическихракетных двигателях (ЭРД) в качестве источника энергии для создания реактивной тяги используется электроэнергия, преобразуемая в кинетическую энергию не- и заряженных частиц [27]. ЭРД подразделяются на следующие основные виды: электростатические (плазменные и ионные), электротермические (электронагревные и электродуговые) и сильноточные (магнитоплазменные с собственным и внешним магнитным полем). Остановимся в дальнейшем вкратце лишь на плазменных и ионных ЭРД.

Плазменные двигатели. Работа этих ЭРД базируется на ускорении заряженных частиц, находящихся в квазинейтральной плазме. Поэтому рабочим телом здесь служит не сгорающее топливо, как в реактивном двигателе или ДВС, а разогнанный магнитным полем до огромных скоростей поток заряженных ионов [28]. Источником ионов в плазменном двигателе (ПД) служит

газ (как правило, им является аргон или водород). Этот газ подается в отсек ионизации ПД для получения холодной плазмы, которая разогревается в следующем его отсеке посредством ионного циклотронного резонансного нагрева. После такого нагрева высокоэнергетическая плазма подается в магнитное сопло ПД, где она вначале формируется посредством магнитного поля в направленный поток, разгоняется и затем выбрасывается в окружающую среду (рис. 30).

Основным достоинством ПД космического аппарата является его долговременное автономное функционирование в открытом космосе при относительно небольшом расходе рабочего тела [27]. ПД в космосе обеспечивается энергией от аккумуляторов, радио-изотопных генераторов или солнечных батарей космического аппарата. Сейчас такие российские и американские ПД развивают пока слабую тягу (от 30 до 50 мН или от 3 до 5 гс). Поэтому они используются только для корректировки спутниковых орбит вокруг Земли либо для медленного, но длительного ускорения небольших аппаратов непосредственно в космическом пространстве. На рис. 31 приведен общий вид советского ПД, разработанного в 1970-х годах [27].

Рис. 30. Внешний вид реактивной плазменной струи при работе в вакууме плазменного ракетного двигателя [28]

Рис. 31. Элекгроракетный ПД, созданный в 1971 году в Институте атомной энергии им. И.В. Курчатова (экспонат-установка политехнического музея, Москва) [27, 28]

Первые в мире успешные космические испытания ПД типа «Эол-1» были осуществлены в СССР в 1974 году [28]. В 1994 году ПД типа СПД-100 (при расходимости его плазменного пучка до ±45° и КПД в 50 %) был оснащен российский спутник связи «Галс-1» [28]. В качестве другого реального примера приме-

нения ПД в космосе укажем, что этот вид ЭРД типа РР8-1350, разработанный российским ОКБ «Факел», в 2003 году вывел в открытое космическое пространство с околоземной орбиты европейский зонд 8МАЯТ-1, ставший в 2005 году искусственным спутником Луны [28].

Ионные двигатели. «Пионером» ионных двигателей (ИД) в мире считается американский ученый Г. Кауфман [28]. Работа ИД основывается на ускорении заряженных частиц, присутствующих в их униполярном пучке. В ИД в качестве рабочего тела может использоваться ксенон или ртуть. Принцип работы ИД, построенного по схеме Кауфмана, поясняет рис. 32. В этой схеме вначале используется ионизация рабочего тела (газа) дуговым разрядом, а затем образовавшиеся в ионизаторе ионы разгоняются электростатическим полем в ионно-оптической системе этого двигателя.

Ионизатор Ускоряющий

Нейтрализатор

Рис. 32. Упрощенная схема построения и работы ИД [28]

Отметим, что ИД, также как и ПД, имеют на сегодня небольшую реактивную тягу, составляющую от 50 до 100 мН или от 5 до 10 гс [28]. Такой тяги недостаточно для перемещения даже небольшого ЛА в атмосфере Земли. Однако в открытом космосе, в вакууме которого практически отсутствует сопротивление, ИД при длительном разгоне космического аппарата может обеспечить ему достижение значительных скоростей. На рис. 33 представлен внешний вид действующих образцов современныхроссийскихИД [28].

Рис. 33. Внешний вид малогабаритных действующих образцов современных российских ионных ракетных двигателей, используемых в космических исследованиях [28]

На рис. 30 и 33 хорошо видны катодные трубки, направленные в сторону сопла рассматриваемых ЭРД и предназначенные для нейтрализации электрозарядов в плазменно-ионных пучках ПД и ИД. На рис. 34 показан общий вид американского ИД типа №ТАТ.

На рис. 35 приведен внешний вид реактивной ионной струи от американского ИД типа №ТАТ в период его испытания на Земле в вакуумной камере.

Рис. 34. Внешний вид современного американского ионного ракетного двигателя типа NSTAT, установленного в 1998 году NASA на космический зонд Deep Space 1 (США) [28]

Рис. 35. Предстартовые испытания в вакууме американского ионного ракетного двигателя типа NSTAT, установленного на космическом зонде Deep Space 1 (США, 1998 год) [28]

СПИСОК ЛИТЕРАТУРЫ

1. Скляренко В.М., Сядро В.В. Открытия и изобретения. -Харьков: Веста, 2009. — 144 с.

2. Климов A.A. Большая книга знаний. — Харьков: Веста, 2010. — 160 с.

3. Баранов М. И. Антология выдающихся достижений в науке и технике: Монография в 2-х томах. Том 1. — Харьков: Изд-во «НТМТ», 2011. — 311 с.

4. Большой иллюстрированный словарь иностранных слов.

— М.: Русские словари, 2004. — 957 с.

5. http://www.3dnews.ru/editorial/dvizhimie_parom_istoriya_p arovih_mashin.

6. http ://www. engine-market.ua/page/history

7. http://www.avto-okey.ru/article9.html

8. http://ru.wikipedia.org/wiki/ne6oH_®ffiiHnn

9. http://1interesnoe.info/2011/01/energeticheskie_ustanovki_d vigateli_vnutrennego_sgoraniya.

10. http://ru.wikipedia.org/wiki/ncTopHH_co3flaHHH_ÄBHraTene й_внутреннего_сгорания.

11. http://ru.wikipedia.org/wiki/OTTO_HHKonayc.

12. http://ru.wikipedia.org/wiki/flBHraTenb_BHyTpeHHero_cropa ния.

13. http://www.dizelist.ru/index.php/istoriya-sozdaniya-biografiya-izobretatelya/14-biografiya-rudolfa-dizelya.

14. http://www.avto.ru/review/post_11375.html.

15. http://amastercar.ru/articles/engine_car_48.shtml.

16. Самойленко Д. 100 років дизелебудування // Газета «Політехнік» №23 (2373) від 30 листопада 2011 p., 1 с.

17. Марченко А.П., Товажнянський Л.Л., Шеховцов А.Ф. та інші. Двигуни внутрішнього згорання: Том 1-6. — Харків: Прапор, 2004.

18. http://gizmod.ru/2009/06/23/motor_vankelja.

19. Храмов Ю.А. История физики. — Киев: Феникс, 2006. -1176 с.

20. Баранов М.И. Антология выдающихся достижений в науке и технике. Часть 5: Электротехника // Електротехніка і електромеханіка. — 2011. — №6. — С. 3-14.

21. http://www.submarine.itishistory.ru/1_lodka_2.php.

22. http://www.promelmach.ru/pages/fimet/catalog/1m.pdf.

23. http://ru.wikipedia.org/wiki/T азотурбинный_двигатель.

24. http://ru.wikipedia.org/wiki/PaKeTHbm_flBHraTenb.

25. http://vakul.ru/istoriya-aviacii/nachalo-reaktivnogo-veka.

26. http://ru.wikipedia.org/wiki/HflepHbm_paKeTHbm_flBHrarenb.

27. http://ru.wikipedia.org/wiki/3neKTph5ecK™_paKeTHbm_flB игатель.

28. http://galspace.spb.ru/orbita/ximdv.htm.

Bibliography (transliterated): 1. Sklyarenko V.M., Syadro V.V. Otkrytiya i izobreteniya. — Harkov: Vesta, 2009. — 144 s. 2. Klimov A.A. Bol’shaya kniga znanij. — Har’kov: Vesta, 2010. — 160 s. 3. Baranov M.I. Antologiya vydayuschihsya dostizhenij v nauke i tehnike: Monografiya v 2-h tomah. Tom 1. — Har’kov: Izd-vo «NTMT», 2011. — 311 s. 4. Bol’shoj illyustriro-vannyj slovar’ inostrannyh slov. — M.: Russkie slovari, 2004. — 957 s. 5. http://www.3dnews.ru/editorial/dvizhimie_ parom_istoriya_parovih_mashin. 6. http://www.engine-market.ua/ page/history. 7. http://www.avto-okey.ru/article9.html. 8. http://ru.wikipedia.org/ wiki/Lebon_Filipp. 9. http://1interesnoe.iHfo/2011/01/energeticheskie_ustanovki_dvigateli_ vnutrennego_sgoraniya. 10. http://ru.wikipedia.org/wiki/Istoriya_sozdaniya_ dvigatelej_ vnutrennego_sgoraniya. 11. http://ru.wikipedia.org/wiki/Otto_ Nikolaus. 12. http://ru.wikipedia.org/wiki/Dvigatel’_vnutrennego_sgoraniya. 13. http://www.dizelist.ru/index.php/istoriya-sozdaniya-biografiya-

izobretatelya/14-biografiya-rudolfa-dizelya. 14. http://www.avto.ru/ re-view/post_11375.html. 15. http://amastercar.ru/articles/ engine_car_48.shtml. 16. Samojlenko D. 100 rokiv dizelebuduvannya // Gazeta «Politehnik» №23 (2373) vid 30 listopada 2011 r., 1 s. 17. Marchenko A.P., Tovazhnyanskij L.L., Shehovcov A.F. ta inshi. Dviguni vnutrishn’ogo zgorannya: Tom 1-6. -Harkiv: Prapor, 2004. 18. http://gizmod.ru/2009/06/23/motor_vankelja. 19. Hramov Yu.A. Istoriya fiziki. — Kiev: Feniks, 2006. — 1176 s. 20. Baranov M.I. Antologiya vydayuschihsya dostizhenij v nauke i tehnike. Chast’ 5: ‘Elektrotehnika // Elektrotehnika і elektromehanika. — 2011. — №6. — S. 3-14. 21. http://www.submarine.itishistory.ru/1_lodka_2.php. 22. http:// www.promelmach.ru/pages/fimet/catalog/1m.pdf. 23. http://ru.wikipedia.org/ wiki/Gazoturbinnyj_dvigatel’. 24. http://ru.wikipedia.org/wiki/Raketnyj_ dvigatel’. 25. http://vakul.ru/istoriya-aviacii/nachalo-reaktivnogo-veka. 26. http://ru.wikipedia.org/wiki/Yademyj_raketnyj_dvigatel’. 27. http:// ru.wikipedia.org/wiki/’Elektricheskij_raketnyj_dvigatel’. 28. http:// galspace.spb.ru/orbita/ximdv.htm.

Поступила 30.03.2012

Баранов Михаил Иванович, д.т.н., с.н.с.

НИПКИ «Молния» НТУ «ХИЛ»

61013, Харьков, ул. Шевченко, 47,

тел. (057) 7076841, e-mail: [email protected]

Baranov M.I.

An anthology of outstanding achievements in science and technology. Part 14: Invention of engines.

A brief scientific essay on the history of invention of various-kind engines is presented, they having become the “power heart” of all transportation means on our planet.

Key words — history, invention of engines, transport.

История создания тепловых двигателей.

История создания тепловых двигателей



Первые тепловые двигатели

К тепловым двигателям принято относить все машины, преобразующие тепловую энергию в механическую энергию движения. В результате поэтапного развития науки и техники человечеством использовались различные конструкции и типы тепловых двигателей.

В первом веке до нашей эры древнегреческим ученым Героном Александрийским была описана примитивная паровая турбина, которую сам Герон назвал в своем трактате «Пневматика» шаром «Эола» или эолипилом (Эол — древнегреческий полубог, властелин ветров и ураганов).


Конструкция эолипила представляла собой бронзовый котел с водой, установленный на опоры. От крышки котла вверх поднимались две трубки, к которым крепилась сфера, при этом соединение трубок со сферой позволяло последней вращаться. При нагревании воды в котле по трубкам в сферу поступал пар под давлением. Из сферы выходили две трубки, изогнутые таким образом, что вырывающийся из них пар заставлял сферу вращаться. О практическом применении этой примитивной паровой турбины не известно ничего, вероятнее всего, она использовалась для развлечения.

Любопытно, что изготовленный спустя века по описанию Герона эолопил во время испытаний показал великолепные скоростные и тяговые характеристики.

Еще одним типом тепловых двигателей, известным человеку с давних времен, является реактивный двигатель. Энергия сгорания топлива в этом двигателе сопровождается повышением давления в камере сгорания и направленным истечением быстродвижущихся газов из сопла, вызывающих направленную противоположно потоку газов движущую силу, действующую на сам двигатель и машину, в которой он размещен (ракету). Известно о применении реактивных двигателей для создания небольших реактивных снарядов и фейерверков в военных и декоративно-зрелищных целях в Китае и некоторых других азиатских странах еще в XIII веке.

Своеобразным двигателем внутреннего сгорания можно назвать изобретенные чуть позже пушки и ружья, стреляющие с помощью порохового заряда. Это ведь тоже, по сути, тепловые машины, преобразующие тепловую энергию газов в механическую энергию летящего ядра, пули или снаряда.

Тем не менее, нельзя сказать, что эти изобретения использовались в механизмах и машинах для преобразования теплоты в полезную работу. Каких-либо серьезных научных работ в этом направлении не производилось, а мрачный период средневекового застоя не только не внес сколь-нибудь заметного вклада в научно-технический прогресс, но и предал забвению первые труды древних изобретателей.

Началом эпохи современных тепловых двигателей можно считать конец XVIII века. Именно в этот период появились первые изобретения, целью которых было не просто демонстрация возможностей тепловых «игрушек», а преобразование теплоты в полезную работу.

В 1764 году талантливейший изобретатель-самородок из Алтая И. И. Ползунов предложил первую в мире конструкцию теплового двигателя, использовавшего для преобразования теплоты в полезную работу горячий пар. Он поставил перед собой задачу создать «огненную машину, способную по воле нашей, что будет потребно исправлять».


Проект паровой машины, предложенный И. И. Ползуновым требовал значительных материальных затрат, тем не менее, через год установка была изготовлена. Она была огромной, достигала высоты 11 метров. Максимальный диаметр котла достигал 3,5 метров, паровые цилиндры имели в высоту 2,8 метра.

В конце 1765 года испытание машины завершилось успешно; конструкция оказалась работоспособной, и некоторое время даже использовалась в горном деле.

Тем не менее, в условиях феодально-крепостнического производства паровая машина И. И. Ползунова не могла, конечно же, получить широкого распространения.

Патентное и авторское право в условиях российской глубинки тех времен тоже мало кто интересовало, поэтому слава изобретателя паровой машины досталась другому человеку.

Позже результаты работ Ползунова были заброшены и на некоторое время забыты в России.

В настоящее время во многих источниках информации (особенно, зарубежных) изобретателем первого парового двигателя упоминается английский изобретатель Джеймс Уатт (1736-1819 г.г.). Уатт построил свой первый экспериментальный двигатель, как и Ползунов, в 1765 году. Но если двигатель Ползунова являлся вполне работоспособной конструкцией, выполнявшей определенные функции в производственном процессе горного дела, то Д. Уатт работу над подобным детищем завершил лишь в 1768 году, и только в 1782 году получил патент на паровой двигатель. Как бы то ни было, заслуги Д. Уатта в разработке и совершенствовании конструкций паровых двигателей трудно переоценить. Разработанные им конструкции паровых двигателей легли в основу самых различных по функционалу машин и механизмов.

Первые паровые машины (двигатели внешнего сгорания) конструировались и разрабатывались без какой-либо научной базы. Ни прогнозирование эффективности, ни прочностные расчеты деталей в те годы не производились, поэтому первые паровые двигатели были настоящими монстрами, имеющими колоссальные по нашим меркам размеры. По крайней мере, под капотом современного автомобиля такую махину уж точно не разместить. Эффективность преобразования теплоты в механическую работу в таких двигателях тоже находилась на крайне низком уровне – КПД паровых машин не превышал 2…5 %.

Тем не менее, паровые двигатели Д. Уатта с успехом использовались не только на транспорте (первый паровоз был изготовлен в 1804 г., первый пароход – в 1807 г.), но и в различных промышленных машинах и установках, облегчая многие технологические процессы и производства.

На рубеже XVIII-XIX столетий началось бурное развитие новоявленной науки – теплотехники и ее раздела – термодинамики.

Были описаны основные термодинамические процессы и открыты газовые законы, которые в дальнейшем послужили базой для обоснования первого и второго начал термодинамики, а также основного уравнения состояния газов, авторами которого являются англичанин Э. Клайперон и наш знаменитый соотечественник Д. И. Менделеев.

Большую роль в становлении и развитии теплотехники сыграли труды французских ученых Ж. Шарля, Э. Мариотта, Ж. Л. Гей-Люссака, Г. Амонтона, итальянца А. Авогадро, англичан Р. Бойля и Д. Дальтона.

Первый серьезный труд, поясняющий пути и способы эффективного преобразования тепловой энергии в механическую, появился в начале XIX века. Он принадлежал талантливому французскому инженеру и физику Сади Карно. Его «Размышления о движущей силе огня и о машинах, способных развивать эту силу», опубликованные в 1824 году, стали первой путеводной звездой для изобретателей и разработчиков конструкций тепловых машин. Карно доказал, что эффективность любой тепловой машины зависит не от конструктивного решения, а от параметров состояния рабочего тела в начале и конце рабочего цикла, а именно – от разности между его максимальной и минимальной температурой.

Идеальный цикл теплового двигателя, описанный молодым французским ученым, и в наши дни является недосягаемой целью, к которой стремятся приблизиться конструкторы тепловых двигателей любого типа и любой конструкции. Тем не менее, даже самые совершенные двигатели внутреннего сгорания (ДВС), разработанные в наши дни, имеют КПД менее 50 %. Остальное – неиспользованные резервы достижения максимальной и минимальной температуры рабочего тела (газов, пара, горючей смеси и т. п.), а также балластные потери энергии на преодоление сил трения и нагрев окружающей среды.

***

Изобретение двигателей внутреннего сгорания

Но вернемся к истории создания первых двигателей.

Итак, двигатели внешнего сгорания (паровые турбины и паровые поршневые машины) к середине XIX века человечество использовать научилось.

Следующим этапом развития тепловых машин явилось появление двигателей внутреннего сгорания, т. е. таких, у которых рабочее тело получало тепло прямо в цилиндрах двигателя.

***

Двигатель Папена

Первое упоминание о создании примитивной конструкции своеобразного двигателя внутреннего сгорания относится к XVII веку.


Французского изобретателя Д. Папена осенила идея использовать энергию пороховых газов в стволе пушки для выполнения какой-либо полезной механической работы. Папен использовал ствол пушки в качестве цилиндра, расположив его вертикально, и поместив в него подвижный поршень, соединенный системой блоков и рычагов с грузом. По замыслу изобретателя после сгорания пороха в стволе поршень должен был подняться вверх; затем его следовало охладить водой, и он, опускаясь вниз, должен поднять собственным весом гирю, т. е. выполнить полезную работу.

Несмотря на кажущуюся наивность идеи, она была новаторской для своего времени – по сути это был первый поршневой двигатель внутреннего сгорания (ДВС).

К сожалению, первое же испытание «двигателя» Д. Папена закончилось разрывом пушечного ствола. Порох оказался не совсем подходящим рабочим телом для теплового двигателя.

К идее Папена вернулись лишь в середине XIX века, после того, как человечество научилось изготавливать менее «вспыльчивое» топливо – светильный газ. В 1799 году французский инженер Ф. Лебон запатентовал способ получения светильного газа путём сухой перегонки древесины или угля. Он же и явился автором идеи использовать этот газ в качестве рабочего тела в поршневом двигателе внутреннего сгорания. Патент на изобретенный им двигатель Ф. Лебон получил в 1801 году, но реализовать свои идеи не успел – в 1804 году он погиб в возрасте 35 лет.

***

Двигатель Ленуара

Спустя более полвека, в 1859 году французский изобретатель Э. Ленуар построил и запатентовал поршневой двигатель, который являлся усовершенствованной конструкцией двигателя Лебона, и тоже использовал в качестве рабочего тела светильный газ, воспламеняемый от внешнего источника (электрической свечи) прямо в цилиндре.

При явном новаторстве конструкции, двигатель Ленуара многое заимствовал у парового двигателя. Он состоял из цилиндра с двухходовым поршнем и кривошипно-шатунным приводом на вал. Светильный газ (от газогенератора) и воздух в цилиндр подавались через специальные золотники, весь цикл состоял из двух тактов.

Предварительного сжатия горючей смеси не предусматривалось. И это вполне понятно — двухходовой цикл (рабочий ход поршня осуществлялся по принципу — туда-сюда) не позволял осуществлять сжатие. Впрочем, о сжатии рабочей смеси для увеличения эффективности работы двигателя в те времена не догадывались.

Запуск двигателя осуществлялся длительным ручным раскручиванием колеса-маховика, после чего машина начинала относительно устойчиво работать.

Конечно, конструкция была очень далека до совершенства, тем не менее, наблюдательные промышленники и активные дельцы сразу усмотрели в двигателе Ленуара ряд бесспорных преимуществ перед безраздельно властвовавшими в то время паровыми двигателями внешнего сгорания.

Во-первых, двигатель внутреннего сгорания, предложенный Ленуаром, был значительно компактнее парового двигателя при тех же рабочих параметрах.

Во-вторых, для его запуска не требовался утомительный ритуал, сопровождавшийся длительным разогревом парового котла.

В третьих – он был значительно проще в обслуживании и эксплуатации – мог работать самостоятельно, практически в автономном режиме, без присмотра кочегара и обслуживающего персонала.


Кроме того, двигатель Ленуара был почти бесшумным (по сравнению с современными четырехтактными двигателями), поскольку работал без сжатия горючей смеси, и хорошо сбалансирован, т. е. почти не вибрировал.

В процессе разработки и создания двигателя Ленуару пришлось решать неожиданные проблемы, что привело к изобретению систем охлаждения и смазки двигателя.

Детище Э. Ленуара получило признание, и для нужд объявившихся потребителей были изготовлены несколько сотен (по некоторым источникам – около 500) таких двигателей, применявшихся на судах, локомотивах, дорожных экипажах и промышленных установках. К слову сказать, Ленуар сколотил на своем двигателе приличное состояние, и перестал работать над усовершенствованием конструкции.

Основным недостатком двигателя Ленуара была низкая эффективность – его КПД, как и следовало ожидать, лишь немного превышал КПД паровых машин и составлял не более 3…4 %. А поскольку его конструкция была несколько сложнее, достойной конкуренции паровым двигателям он составить не смог.

***



Двигатель Отто

В 1864 году немецкий инженер Андреас Отто (нем. Andreas Otto) получил патент на свою модель газового двигателя, который принципиально и конструктивно отличался от двигателя Ленуара.

Цилиндр двигателя размещался вертикально. Смесь воздуха и газа засасывалась в цилиндр благодаря разрежению, создаваемому поршнем, после чего происходило воспламенение с помощью открытого пламени через специальную зажигательную трубку. Осуществлялся рабочий ход, затем выпуск газов и процесс повторялся.

Замысловатостью отличалось и конструктивное решение передачи механической энергии от поршня к валу двигателя — специальная зубчатая рейка, прикрепленная вдоль оси поршня, периодически связывалась с валом, вращая его во время рабочего хода поршня, и отсоединялась от вала, когда поршень совершал инерционное движение.

КПД двигателя Отто был значительно выше, чем у двигателя Ленуара (примерно, в пять раз), поэтому конструкция сразу привлекла интерес. Не обладающий достаточными средствами для самостоятельной работы над двигателем, А. Отто в том же 1864 году заключил контракт с состоятельным инженером Лангеном для эксплуатации своего изобретения. Вскоре была создана фирма «Отто и Компания».

А. Отто постоянно работал над усовершенствованием своего детища, которое стало пользоваться большим спросом у потребителей. В 1877 году изобретатель запатентовал совершенно новое техническое решение в области принципа работы тепловых машин — четырехтактный двигатель внутреннего сгорания. Принцип работы этого двигателя лежит в основе современных бензиновых и газовых поршневых двигателей внутреннего сгорания с воспламенением от внешнего источника.

Триумф немецкого изобретателя был омрачен французскими конкурентами — выяснилось, что за несколько лет до изобретения Отто, принцип работы двигателя по четырехтактному циклу был описан французским инженером Альфонсом Эженом Бо де Роша (фр. Alphonse Eugène Beau de Rochas).

Бо де Роша, как и Отто, пришел к выводу, что газовую смесь перед воспламенением необходимо сжать, а затем предложил и схему четырехтактного рабочего цикла для двигателя внутреннего сгорания. Он изложил свои идеи в книге, опубликованной несколько раньше, чем защитил свой патент Отто — еще в 1862 году, но сам двигатель изготавливать не стал.

Группе французских промышленников удалось оспорить в суде авторские права Отто на изобретение, в результате чего его патентные привилегии были значительно сокращены, в том числе аннулировано монопольное право на четырехтактный цикл теплового двигателя.

Тем не менее, конкурентам не удалось создать двигатель, превосходивший по рабочим характеристикам и техническим параметрам двигатели, создаваемые фирмой «Отто и Компания». Сказывался большой предшествующий опыт немецких разработчиков.

Долгое время двигатели Отто считались лучшими и пользовались неизменным спросом у промышленников. За два десятка лет было выпущено более сорока тысяч таких двигателей разной мощности.

Существенным недостатком двигателя Отто было применение дорогого светильного газа в качестве топлива. Это обстоятельство значительно тормозило процесс широкого внедрения двигателей Отто во все сферы промышленности и транспорта — заводов, выпускающих светильный газ, было мало, а технология его изготовления относительно затратной.

Поиски подходящего топлива, способного заменить светильный газ, не прекращались со времени изобретения двигателя Ленуара.

Заметно преуспел в этом вопросе американец Д. Брайтон, предложивший в 1872 году ряд интересных технических решений. В качестве альтернативы светильному газу Брайтон сначала предлагал использовать керосин, но плохая испаряемость этого топлива натолкнула изобретателя на идею использовать в качестве горючего более легкий и эффективно испаряющийся бензин.

Оставалось придумать специальное устройство, способное превратить эту горючую жидкость в парообразное состояние и смешать пары бензина с воздухом, что привело к изобретению первого карбюратора. Карбюратор Брайтона был построен на принципе испарения бензина с помощью нагрева, что оказалось не самым удачным решением.

В 1882 году немецкий изобретатель Г. Даймлер, работавший долгое время в фирме Отто, открыл свой бизнес по производству двигателей, и попытался создать компактную конструкцию бензинового двигателя, намереваясь устанавливать его на небольших транспортных средствах.

Уже через год ему удалось изготовить первый двигатель. В системе питания своего двигателя он использовал несколько усовершенствованную конструкцию карбюратора Брайтона, но его детище тоже не было лишено недостатков, поскольку испарение бензина осуществлялось нагреванием, а воспламенение горючей смеси – раскаленной трубкой, помещаемой в цилиндр.

Тем не менее, двигатель Даймлера был вполне работоспособен.

Гениальная идея посетила в 1893 году венгерского инженера Д. Банки. В отличие от Брайтона и Даймлера он предлагал не испарять бензин, а распылять его в воздушной струе с помощью жиклеров. Так появилась первая конструкция жиклерного карбюратора, ставшего прообразом современных карбюраторов бензиновых двигателей. Распыленный бензин испарялся уже в цилиндре благодаря смешиванию с воздухом, нагреваемым в процессе сжатия поршнем.

Принципиальные идеи, предложенные и осуществленные Д. Банки в его карбюраторе, используются в усовершенствованном виде и в наши дни.

***

Двигатель Дизеля

Очередной революционный прорыв в области двигателестроения состоялся благодаря немецкому изобретателю, инженеру Рудольфу Дизелю.

Некоторое время Дизель пытался изобрести двигатель, способный работать на угольной пыли, но его работы в этом направлении оказались неудачными. Тогда он направил творческую энергию в совершенно другое русло.

Слабым местом газовых и карбюраторных двигателей считался процесс воспламенения рабочей смеси в цилиндре двигателя — применявшиеся для этих целей зажигательные, калильные и электрические устройства не отличались высокой надежностью.

Дизелю пришла идея использовать для воспламенения горючей смеси тепло, выделяемое в рабочем теле в процессе сжатия, протекающего почти по адиабатному циклу.

По легенде, гениальная идея посетила изобретателя, когда он накачивал ручным насосом колесо велосипеда — Дизель обратил внимание, что насос сильно нагрелся из-за циклического сжимания воздуха.

Разумно было предположить, что для сильного нагрева смесь должна быть сжата значительно сильнее, чем в карбюраторных двигателях.

Впрочем, зачем сжимать готовую горючую смесь? Ведь достаточно сжать в цилиндре воздух, а затем подать в него топливо в распыленном состоянии, и оно воспламенится.

Примерно так рассуждал изобретатель, разрабатывая совершенно новую конструкцию теплового двигателя, принесшую ему славу, известность и состояние.

В 1892 г. Р. Дизель запатентовал свой двигатель, который впоследствии так и назовут – дизельный двигатель, или просто – дизель.

Двигатель Дизеля был способен работать без карбюратора и запального устройства, при этом он расходовал меньше топлива, чем все известные до того времени тепловые двигатели.

В качестве топлива мог использоваться и бензин, и керосин, т. е. был многотопливным.

Вскоре Дизель продал право на использование своего изобретения богатейшему промышленнику Э. Нобелю (брату известного основателя престижной премии), и его детище стремительно завоевало популярность у промышленников и потребителей.

В 1913 году Р. Дизель трагически погиб (утонул) при неизвестных обстоятельствах по пути в Англию на теплоходе.

***

Двигатель Тринклера (Сабатэ-Тринклера)

Усовершенствование конструкции двигателя Дизеля русским инженером Г. В. Тринклером привело к патентным противостояниям. Обладатель патента на дизельный двигатель Э. Нобель потребовал прекратить работы над двигателем Тринклера, что и было выполнено. Дело в том, что двигатель русского изобретателя для воспламенения топлива использовал запатентованный Р. Дизелем принцип – теплоту сжимаемого воздуха, что послужило поводом для претензий со стороны владельца прав на изобретение.

Густав Васильевич Тринклер (1876-1957) — советский учёный и изобретатель, создатель бескомпрессорного дизельного двигателя.

Идея создания теплового двигателя нового типа посетила Г. Тринклера еще в студенческие годы, но лишь спустя десятилетие ему удалось воплотить замысел в жизнь. Причем для этого ему даже пришлось уехать в Германию, поскольку из-за патентных противостояний с владельцем патента на дизель Э. Нобеля в России ему запретили заниматься работами в этом направлении.

По возвращению в Россию он длительное время руководил отделом тепловых двигателей на Сормовском машиностроительном заводе.

Тринклер является автором более полусотни научных работ. В 1930 году за заслуги перед наукой ему была присвоена ученая степень доктора технических наук без защиты диссертации.

В 1934 году Тринклер перешёл на преподавательскую работу в институт водного транспорта, но до конца жизни поддерживал тесную связь с заводом Красное Сормово.

Основное отличие конструкции «Тринклер-мотора» состояло в том, что топливо в цилиндр подавалось с помощью специального устройства — прообраза современного ТНВД и форсунки, конструкция которого была несколько ранее предложена французским изобретателем Сабатэ (Сабатье). В классическом («чистом») дизельном двигателе топливо подавалось в камеру сгорания при помощи специального компрессора, поэтому такие двигатели иногда называют компрессорными дизелями, а двигатели Сабатэ-Тринклера — бескомпрессорными.

Кроме того, Тринклер внес еще одно усовершенствование, позволяющее эффективнее сжигать топливо: сжатый воздух поступал из цилиндра в небольшую отдельную камеру, куда и впрыскивалось топливо, а затем уже из камеры процесс горения распространялся в цилиндр.

Эта конструкция впоследствии получит название двигатель Тринклера (Сабатэ-Тринклера), иногда его называют бескомпрессорный или форкамерный дизель.

Спустя некоторое время изобретателю удалось доказать явное отличие рабочего цикла, осуществляемого новым двигателем, от рабочего цикла двигателя Дизеля, что позволило заявить о существенной новизне конструкции, и рождение двигателя Тринклера состоялось, хоть и с некоторым запозданием.

Цикл двигателя Тринклера напоминает гибрид рабочих циклов двигателей Отто и Дизеля – воспламенение рабочей смеси на первой стадии осуществляется почти по изохорному процессу (как у двигателя Отто), а затем – по изобарному (как у дизельного двигателя). Использование изобретения Тринклера позволяло достичь более полного и равномерного сжигания топлива во время рабочего хода поршня.

Если сравнивать тепловой КПД поршневых двигателей, получивших наиболее широкое распространение в промышленности и транспорте, то безусловное первенство принадлежит двигателю Дизеля, имеющему самый высокий коэффициент полезного действия. Однако, двигатель Дизеля в «чистом» виде почти не применяется в практических целях из-за несовершенства системы подачи топлива. В настоящее время название дизельный двигатель закрепилось за двигателями, которые справедливее было бы называть двигателями Тринклера. Тем не менее, двигатель, работающий по циклу Дизеля имеет самый высокий температурный КПД среди известных типов ДВС.

У двигателя Отто самый низкий температурный КПД при равных условиях работы.

Двигатель, работающий по циклу Сабатэ — Тринклера занимает промежуточное место на этом «пьедестале почета» между дизельным двигателем и двигателем Отто.

***

Идеальные циклы поршневых двигателей внутреннего сгорания

Скачать теоретические вопросы к экзаменационным билетам

по учебной дисциплине «Основы гидравлики и теплотехники»
(в формате Word, размер файла 68 кБ)

Скачать рабочую программу

по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):

Скачать календарно-тематический план

по учебной дисциплине «Основы гидравлики и теплотехники» (в формате Word):



Главная страница
Дистанционное образование

Специальности

Учебные дисциплины

Олимпиады и тесты

Неизвестный изобретатель автомобильного двигателя

Богатая история изобретения

Над изобретением и усовершенствованием системы двигателя внутреннего сгорания действительно работало огромное количество различных ученых, причем нередко коллеги, совершенствующие изобретения друг друга, проживали в разных странах.
И, согласно официальным данным, первые проекты такого двигателя были действительно разработаны еще в XVII веке, однако ни один из официальных источников не называет имя Жана де Готефилля. Если верить истории, то автором первого такого проекта был современник Готефилля, Христиан Гюйгенс, хотя некоторые современные ученые и историки считают, что его проект далек от нынешней модели двигателя внутреннего сгорания, потому и привыкли считать изобретателем этого двигателя других ученых.

Вместо топлива Гюйгенс предлагал использовать самый обычный порох, а идея его родилась благодаря знакомству ученого с принципом работы артиллерийских орудий. В дальнейшем Денис Папен, создатель первой в мире паровой машины, предпринимал попытки построить механизм с тем же принципом работы, но безуспешно.

Филипп Лебон

Есть ученые, которые придерживаются мнения, что первым автором проекта двигателя внутреннего сгорания был именно Филипп Лебон, который, кстати, также был французом. В 1799 году этот инженер открыл светильный газ, и в том же году получил патент на использование этого газа и его получение из древесины и угля.

Газовые лампы Лебона стали успешным конкурентом французским дорогим свечкам, но сам инженер быстро понял, что газ можно использовать не только для осветительных приборов, и уже в 1801 году он подал заявку на получение патента на разработку газового двигателя, в котором были основными составляющими два компрессора, а также камера смешения.

По сути, Лебон работал над проектом двигателя внутреннего сгорания, и был близок к этому изобретению, но работу он до конца довести не успел, поскольку в 1804 году неожиданно погиб. После его смерти идея создания двигателя на светильном газе пришла в головы сразу нескольким ученым, которые много работали над этими проектами, и, возможно, среди них был некий Готефилль, но следует отметить, что все изобретения целого ряда ученых после смерти Лебона не имели коммерческого успеха.

Готефилль и Ленуар

Таким образом, официально первый надежный и успешно работающий двигатель внутреннего сгорания был создан только в 1860 году, и автором его стал известный инженер из Бельгии Эжен Ленуар.

Вполне возможно, что именно Эжен (или Жан, как указано в некоторых документах) Ленуар был просто перепутан с неким Готефиллем, откуда и взята была информация о его якобы первом двигателе внутреннего сгорания. Хотя тогда не совсем ясно, почему указан год рождения ученого 1647, когда Ленуар изобрел свой двигатель только во второй половине XIX века.

Двигатель, созданный Ленуаром, работал при помощи газового топлива. Он требовал серьезных доработок, и на сегодняшний день столь сильно видоизменен, что о проекте Ленуара уже можно забыть.

Толчок в развитии двигателей

После этого была череда громких открытий разных ученых, которые позволили быстро усовершенствовать двигатель, придуманный Ленуаром. Немецкий инженер-конструктор Николас Отто представил миру 4-тактный двигатель, работавший на газу, и в том же 1876 году практически одновременно с немецким коллегой Дугальд Кларк провел успешные испытания 2-тактного двигателя.

Далее над усовершенствованием модели двигателя внутреннего сгорания работали многие механики и инженеры по всему миру. В 1897 году Рудольф Дизель создал аналог такого двигателя, в котором рабочая смесь воспламенялась в процессе сжатия воздуха в цилиндре, и этот двигатель получил существующее до сих пор название — дизельный двигатель.

Уже в XX веке двигатель внутреннего сгорания стал основным типом двигателя для создания автомобильного транспорта по всему миру. К 70-м годам 80% существовавших автомобилей различных марок и производителей были оснащены разными моделями таких двигателей, и именно развитие автомобилестроения дало толчок к практически мгновенной эволюции от двигателя внутреннего сгорания первоначального к тому, который мы можем видеть сегодня.

По сей день продолжается работа над усовершенствованием строения данного типа двигателей, что принесло резкие изменения не только в автомобилестроение, но и в энергетику и строение электростанций. Возможно, когда-нибудь придет момент, когда человечество откажется от этой конструкции в пользу более экономичных и безопасных, а также безвредных для экологии, но пока что об этом речи не идет. В любом случае, изобретение двигателя внутреннего сгорания можно по праву считать началом масштабной технической революции, которую пережила цивилизация в XX веке.

А где Готефилль?

О Жане де Готефилле не найдены сведения ни в библиотеках, ни в учебниках по физике. Он не только не был официально первым изобретателем двигателя внутреннего сгорания, но и не изобрел, судя по всему, вообще ничего сколь-нибудь значимого, либо был незаслуженно забыт историей и наукой.

Конечно, нас не было в 1647 году, и невозможно сказать, был ли такой человек на самом деле, кем он был и чем занимался в жизни. Возможно, что действительно его изобретение замалчивали, или же он не оформил в свое время патент на свой двигатель, выпав таким образом из списка изобретателей двигателей внутреннего сгорания.

Однако факт остается фактом, и с этим согласятся как историки, так и физики: Жан де Готефилль не изобретал первый рабочий двигатель внутреннего сгорания официально, это изобретение принадлежит по праву именно Эжену Ленуару, несмотря на все успехи исследований его предшественников и последователей.

Источник: http://vistanews.ru

Изобретение двигателя внутреннего сгорания

После многих лет проб и ошибок изобретатели и инженеры разработали практичный и эффективный двигатель внутреннего сгорания, который сильно повлиял на мир. В этой статье будут представлены противоположные точки зрения на предысторию и проанализировано влияние, которое оно оказало на транспорт и окружающую среду.

Изобретение двигателя внутреннего сгорания стало результатом работы нескольких инженеров и изобретателей в Европе и Америке.Во-первых, в 1859 году Жан-Жозеф Этьен Ленуар разработал первый практичный двигатель внутреннего сгорания, который после многих модификаций и изменений привел к созданию современного двигателя, играющего решающую роль в современном обществе.

До Ленуара существовали только двигатели внешнего сгорания, такие как паровой двигатель и ранний водородный двигатель. Изобретение Этьена Ленуара 1859 года предлагало двухтактный одноцилиндровый двигатель, работающий на «светильном газе». В основном используемый для питания ламп и небольших безделушек, двигатель Этьена Ленуара никогда не мог привести в действие повозку для перевозки людей.

Приближаясь к 1882 году, Вильгельм Майбах и Готлиб Даймлер, немецкие изобретатели, объединились для изобретения усовершенствованного двигателя внутреннего сгорания. В 1885 году комбинация запатентовала четырехтактный двигатель. Вскоре после этого дуэт прикрепил двигатель к велосипеду и повозке, сконструировав одни из первых в мире моторизованных транспортных средств. Позже, в 1890 году, было сделано еще несколько изобретений для улучшения первоначальной конструкции двигателя Maybach.

Будучи директором недавно созданной Daimler Motor Company, Майбах разработал первый в мире поплавковый карбюратор, который произвел революцию в двигателе, позволив использовать бензин в качестве топлива.В то же время, когда появился механизм Майбаха, начали открываться большие залежи нефти, что сделало бензин очень доступным, а стоимость семьи, владеющей автомобилем, стала реальной. В общем, на изобретение двигателя внутреннего сгорания ушло много лет и ряд модификаций, чтобы получился современный двигатель, но это привело к буму транспорта.

Изобретение двигателя внутреннего сгорания произвело революцию в транспорте и экономике, поскольку автомобиль заменил паровой поезд в качестве основного средства передвижения и торговли.Из-за того, что он долгое время был основным видом транспорта по всему миру, сторонники паровых двигателей и сотрудники, возможно, выступали против перехода в эпоху автомобилей. Преобразование началось в 1885 году с Карлом Бенцем, немецким инженером, после того как Майбах и Даймлер усовершенствовали двигатель внутреннего сгорания.

Benz разработал первый практичный автомобиль на базе модели Maybach. В автомобиле Бенца, Motorwagon, их было всего три, но это было началом революции парового двигателя.Затем Генри Форд разработал систему производства, в которой он мог массово производить автомобили с использованием сборочной линии. В начале 1900-х годов Форд, используя свой эффективный производственный процесс, сделал автомобиль доступным для широкой публики, и к 1914 году новый автомобиль Форда, модель Т, продавался за 490 долларов. К 1920 году новый способ производства автомобилей существенно снизил цены до ¼ первоначальной стоимости автомобиля.

Автомобиль стал необходимостью для каждой американской семьи. Когда правительство начало строить системы шоссе и произошло больше взаимодействия, автомобиль с двигателем внутреннего сгорания стал намного превосходить поезда с паровым двигателем.В 1880 году, за несколько лет до появления автомобиля, в Соединенных Штатах было 93 000 миль железных дорог. Поезда, приводимые в движение паровым двигателем, которые могли перевозить огромные грузы, считались лучшим и самым мощным способом перевозки грузов на большие расстояния. Эта сеть железных дорог и поездов, которые их использовали, требовала много людей, чтобы поддерживать их нормальное функционирование.

Из-за более низкого спроса на паровой двигатель и доступности новых технологий работы для этих людей стало меньше.Потеря работы, возможно, настроила бывших работников поездов против трансформации технологий, но со временем они осознали бы огромные преимущества автомобиля. Хотя паровая машина по-прежнему использовалась для доставки товаров, автомобиль, облегчивший людям путешествие, принес новый взгляд на жизнь. Автомобиль стал связующим звеном с индивидуальной свободой и мобильностью.

С автомобилем пришла одна из наиболее широко используемых технологий в мире, изобретение двигателя внутреннего сгорания, которое оказало заметное влияние на многие части современного мира.Одной из наиболее широко обсуждаемых и спорных тем, связанных с автомобилем, является его влияние на окружающую среду.

Эл Гор, бывший вице-президент США и лауреат Нобелевской премии мира, много лет пытался доказать негативное влияние двигателя внутреннего сгорания на нашу планету. Во время своей президентской кампании в 2000 году он проповедовал идеи более чистой окружающей среды и лучшего образа жизни. способность земли естественным образом обеспечить то, что мы ищем.

Мы часто игнорируем влияние нашей технологической алхимии на естественные процессы. Когда мы производим миллионы двигателей внутреннего сгорания и автоматизируем преобразование кислорода в CO2, мы препятствуем способности Земли очищаться от примесей, которые обычно удаляются из атмосферы».

Он заставил многих людей поверить в то, что современный автомобиль оказывает ужасное и долговременное воздействие на атмосферу земли и что это одна из основных причин появления термина «глобальное потепление».«Хотя у Gore было огромное количество поклонников, и он изменил мнение тысяч американцев об автомобилях, «глобальное потепление» вызывает споры, и многие автомобильные производители и ученые выступали против него.

Из-за этого аргумента многие люди решили найти другие виды транспорта или использовать автомобиль, работающий на электричестве, а не на бензине, например Toyota prius, Nissan leaf и Chevy volt. Поскольку Америка, на долю которой приходится 20% производимых в мире парниковых газов, использует 1/3 добываемой в мире нефти, хорошей идеей было бы вождение автомобиля, работающего на электричестве.

В настоящее время обсуждаются усилия по созданию более безопасной и чистой планеты в результате аргументов против двигателя внутреннего сгорания и его негативного воздействия на планету. Соглашаясь с положительным взглядом на двигатель внутреннего сгорания, большинство считает, что зависимость общества от автомобиля и двигателя внутреннего сгорания необходима. Во главе этого аргумента стоят многомиллиардные предприятия, которые обеспечивают работой тысячи людей и по-прежнему производят основной вид транспорта.

Сегодня в Соединенных Штатах используется около 250 миллионов автомобилей, и почти все они оснащены двигателем внутреннего сгорания, что делает его очень важным в нашем образе жизни.Прекращение использования двигателя внутреннего сгорания для того, чтобы сделать нашу планету более экологичной, было бы чрезвычайно трудной и почти невыполнимой задачей. Крупные игроки, такие как Ford и General Motors, в последние годы переживают спад, и им пришлось закрыть более дюжины американских заводов и сократить 60 000 рабочих мест.

Людям, работающим в этих компаниях и компаниях, поддерживаемых Ford и General Motors, заявления о «глобальном потеплении» могли стоить им работы. Недавний рост этих компаний показал рост занятости и создал тысячи рабочих мест.Кроме того, поскольку в Соединенных Штатах ездят миллионы автомобилей, для их питания ежегодно используются миллиарды галлонов нефти.

Нефтяная промышленность является одной из крупнейших отраслей промышленности в мире, и прекращение использования бензина в двигателях будет иметь серьезные последствия. Противники использования нефти могли бы согласиться с энтузиастами «глобального потепления» и бороться за здоровье нашей планеты. Им противостоят люди, чьи рабочие места создает этот рынок.

Вопреки мнению тысяч людей, считающих, что эти компании и автомобили разрушают планету, нам нужны эти компании для создания рабочих мест и поддержания американского транспорта.Узнав об истории изобретения и его раннем влиянии на общество, я больше согласен с транспортом. Жан-Жозеф Этьен разработал первую конструкцию двигателя внутреннего сгорания, а Вильгельм Майбах модифицировал его для работы на бензине.

Автомобиль, изобретенный Карлом Бенцем и ставший доступным благодаря Генри Форду, стал крайне необходимой для общества новой формой транспорта. Хотя многие люди потеряли работу из-за крушения парового локомотива, многие рабочие места были творческими, и появилась новая свобода передвижения.В дополнение к падению парового двигателя в Соединенных Штатах широко обсуждались последствия для окружающей среды. Я согласен с идеей, что мы, граждане Соединенных Штатов, должны стремиться стать «более экологичными» и создать более экологичную транспортную сеть, но на это уйдет много лет.

Однако я считаю, что автомобильная промышленность является важным винтиком в нашей экономике и что она напрямую и косвенно обеспечивает бесчисленное количество рабочих мест людям по всей стране.Помимо своей роли в нашей экономике, я согласен с тем, что автомобиль с двигателем внутреннего сгорания позволяет современному обществу свободно перемещаться туда, куда ему нужно. Я пришел к этим выводам, показав в своей статье две противоположные точки зрения на тему «Изобретение двигателя внутреннего сгорания» и приняв сторону лучших мнений.

Будущее дизайна двигателей внутреннего сгорания: тенденции 2022 года

Изобретение двигателя внутреннего сгорания (ДВС) стало благом для транспорта, эффективности и всего, что связано с Америкой.Но по мере того, как технологии интегральных схем устаревают, а заботы об окружающей среде возрастают, на смену им приходят альтернативы.

Автопроизводители и потребители обдумывают будущее производства автомобилей и грузовиков с двигателями внутреннего сгорания и рассматривают , которые заменят существующих конструкций. Обзор того, что привело нас к этому, а также новые проблемы эффективности и защиты окружающей среды, которые может помочь решить порошковый металл, — это уроки, которые не должен пропустить ни один OEM-инженер:

Будущее двигателей внутреннего сгорания

Ищите эти внешние факторы, которые повлияют на подход инженеров к проектированию двигателей внутреннего сгорания в течение следующего десятилетия:

  1. Ограничения на выбросы CO₂
  2. Эффективность двигателя для снижения этих выбросов
  3.  Дизель против.традиционный газ
  4. Электромобили против автомобилей с ДВС
  5. Порошковая металлургия поддерживает переход к экологичности

Откройте изображение в новой вкладке, чтобы увидеть полномасштабную версию этой инфографики:

1. Ограничения на выбросы CO₂

Глобальный углеродный проект сообщил, что ожидается, что мировые выбросы углекислого газа вырастут на 4,9% в 2021 году, почти вернувшись к рекордным уровням 2019 года. Выбросы резко упали с 2019 по 2020 год (5.4%), поскольку пандемия COVID практически остановила поездки.

В августе 2021 года Агентство по охране окружающей среды США (EPA) предложило пересмотренные рекомендации по выбросам парниковых газов для легковых и грузовых автомобилей 2023–2026 годов выпуска. Предлагаемые стандарты включают увеличение выбросов на 10% по сравнению с текущими стандартами для автомобилей 2023 модельного года и повышение уровня выбросов на 5% в каждый из следующих 3 лет. Существующие стандарты ежегодно ужесточаются всего на 1,5%.

В то же время EPA объявило о планах по сокращению выбросов загрязняющих веществ от большегрузных автомобилей за счет более строгих правил.Агентство ожидает, что новые правила будут применяться к большегрузным автомобилям, начиная с 2027 модельного года.

Независимо от планов Агентства по охране окружающей среды, политическая и экологическая атмосфера по-прежнему подталкивает к повышению эффективности двигателя внутреннего сгорания больше, чем потребительский спрос. Согласны ли лично инженеры и руководители с изменениями в воздухе или нет, отрасль неуклонно движется в этом направлении.

2. Как повысить эффективность выбросов двигателей внутреннего сгорания?

Управление по энергоэффективности и возобновляемым источникам энергии сообщает, что производители сократили выбросы загрязняющих веществ более чем на 99% за 30-летний период.Творческие умы добились этого, сохранив или увеличив экономию топлива.

Помимо бензина и дизельного топлива, производители изучают другие способы увеличения экономии топлива:

  • Использование биодизеля
  • Использование других альтернативных или возобновляемых видов топлива
  • Комбинация двигателей внутреннего сгорания с гибридными электрическими силовыми установками

3. Сравнение дизельных двигателей и традиционных бензиновых двигателей

Когда европейцы перешли с дизельных автомобилей на бензиновые, произошло соответствующее увеличение выбросов углекислого газа.По неожиданному повороту некоторые из сегодняшних автомобильных стратегий основаны на дизельных двигателях.

В отчетах указывается, что многие большие дизельные грузовики производят меньше выбросов CO2, чем некоторые небольшие автомобили с газовым двигателем. Усовершенствованные технологии позволили создать дизельные двигатели, которые могут заправлять небольшие транспортные средства и обеспечивать:

  • Увеличенный расход бензина
  • Более низкие уровни выбросов углерода
  • Больший крутящий момент
  • Долговечный двигатель

Исследование Мичиганского университета, проведенное в 2021 году (вместе с General Motors), показало, что в потребительских автомобилях 100% возобновляемое дизельное топливо может снизить выбросы углерода.Участвующие инженеры заявили, что биотопливо из возобновляемых углеводородов сократило углеродный след на 80% по сравнению с традиционным нефтяным топливом в дизельных двигателях Chevy Cruze и GMC Sierra, которые они тестировали.

Возможно, дизельное топливо является подходящей заменой, в то время как некоторые части мира (например, США) начинают покупать электромобили?

4. Аккумуляторные электромобили и автомобили с двигателем внутреннего сгорания

Ты знал, что это произойдет. Хотя бензиновые двигатели, похоже, не исчезают полностью, они сталкиваются с жесткой конкуренцией со стороны своих электрических конкурентов.

Даже BMW, чей член совета директоров, отвечающий за развитие, в 2019 году назвал автомобильную электрификацию «переоцененной», сигнализирует о начале конца. В октябре 2021 года BMW объявила, что к 2024 году прекратит производство двигателей внутреннего сгорания на одном из своих заводов (в Мюнхене).

Одна вещь, которую сторонники двигателя внутреннего сгорания всегда могли повесить над головами проэлектрической толпы, — это аккумулятор. В частности, это:

  • Размер
  • Стоимость
  • Долговечность
  • Возможности зарядки или их отсутствие

Однако прогнозируется, что к середине 2022-х годов электромобили достигнут ценового паритета с традиционными автомобилями, поскольку стоимость аккумуляторов для электромобилей резко упадет.В 2021 году агентство BloombergNEF прогнозировало, что к 2023 году стоимость литий-ионного аккумулятора для электромобиля упадет ниже 100 долларов за кВтч, т. е. примерно на 20%. Эти сокращения, безусловно, происходят быстрее, чем ожидал рынок.

Опасения по поводу запаса хода станут меньшей проблемой для электромобилей в будущем. Технологии развиваются, и появляется все больше зарядных станций. «Беспокойство по поводу запаса хода» (страх потребителей, что им негде будет зарядить аккумулятор) по-прежнему остается серьезной проблемой, которую OEM-производителям еще предстоит решить.

Усовершенствованная порошковая металлургия, сильно отличающаяся от порошковой металлургии вашего отца, становится все более важным фактором при проектировании компонентов двигателей.

«Зеленая» технология порошковой металлургии идет рука об руку с будущим экологичных автомобилей. Спеченные магнитомягкие материалы с более высокой плотностью обеспечивают беспрецедентное повышение производительности. Возможно, вы уже слышали историю о порошковом металле, но эти новые материалы отличаются от материалов стандарта 35, на которые производители полагались десятилетиями.

Стандарт MPIF 35 является отличной базой для производителей порошковой металлургии, но для ваших будущих конструкций статора и ротора могут потребоваться материалы и процессы, превосходящие «стандартные» уровни производительности. В некоторых случаях вы даже можете исключить компонент из сборки, используя порошковый металл.

Современная передовая технология уплотнения может быть немного дороже на начальном этапе, но в долгосрочной перспективе она может значительно сэкономить производителям (и водителям).

Многие компоненты могут быть переведены в порошковый металл.Порошковая металлургия добилась больших успехов в создании мелких деталей для электродвигателей и других автозапчастей по многим причинам:

В частности, магнитомягкие композитные материалы прокладывают путь к сверхэффективному электродвигателю.

Современные услуги порошковой металлургии позволяют плавно перейти от традиционной конструкции двигателя внутреннего сгорания к более эффективным и экологически безопасным двигателям будущего. Достижения в области материалов для ПМ (как вы найдете ниже) и процессов (таких как спекание) сделали это возможным.

Конечно, двигатели внутреннего сгорания еще какое-то время будут существовать. Порошковая металлургия также может способствовать созданию новых или альтернативных конструкций двигателей внутреннего сгорания.

Чтобы узнать, как вы можете использовать новые материалы и процессы порошковой металлургии для улучшения конструкции и производительности вашего двигателя, посетите наш ресурсный центр:

(Примечание редактора: эта статья была первоначально опубликована в сентябре 2019 г. и недавно была обновлена.)

Великие изобретения – Первый двигатель внутреннего сгорания

Наша современная автомобилестроительная промышленность не существовала бы без изобретения двигателя внутреннего сгорания . Возможно, немногие из вас знают, кто является автором одного из величайших изобретений в современной технологической истории.

Узнайте, кто был изобретателем двигателя внутреннего сгорания. Как это работает и какие типы двигателей используют люди.

Как работает двигатель внутреннего сгорания?

Стандартный двигатель внутреннего сгорания вырабатывает мощность за счет впрыска смеси воздуха и топлива. Звучит просто, да? В своей камере сгорания и цилиндре двигатель сжимает топливно-воздушную жидкость, которая сгорает от искры.

Мой любимый V8 только на Amazon

Концентрированные газы увеличиваются, создавая высокое давление. Они прикладывают напряжение к поршню или ротору. Этот компонент, приводимый в действие химической энергией, далее передает ее посредством движения в механическую энергию.e

Варианты и прототипы

Наиболее распространенным топливным двигателем является четырехтактный двигатель. Его также называют четырехтактным двигателем из-за четырех циклов, которые поршень совершает внутри цилиндра для производства механической энергии.Этот тип двигателя считается первым двигателем с полной функциональностью, позволяющей быстро двигаться, но при этом не будучи слишком тяжелым.

На протяжении многих лет испытывались и использовались другие варианты топливного двигателя, такие как двухтактный двигатель. Двухтактные двигатели были легче и меньше из-за меньшего количества механических частей. Двухтактные двигатели все еще используются для мотоциклов, скутеров и в качестве двигателей для инструментов, но больше не являются частью автомобильной промышленности.

Существуют также шеститактные двигатели с множеством вариаций количества поршней внутри.Некоторые из их преимуществ могут заключаться в повышении эффективности использования топлива, снижении механической сложности и снижении выбросов.

Кто был первым?

«Официальным» изобретателем атмосферного газового двигателя считается немец Николаус Отто, запатентовавший свой двухтактный двигатель в 1863 году. Однако, несмотря на его патент, многие ученые внесли свой вклад в изобретение современного двигателя система.

 

До Отто, в 1794 году Роберт Стрит создал первый двигатель внутреннего сгорания, работавший на жидком топливе, а позднее, в 1807 году, швейцарский изобретатель Франсуа де Риваз сконструировал двигатель, работающий от электрической искры.Хотя все эти изобретения проложили путь будущему атмосферному двигателю, ни один из этих двигателей не был использован в автомобилестроении.

По сравнению с этим двигателем этот высокотехнологичный

За несколько лет до того, как Отто сделал свое открытие, бельгийский инженер Жан Ж. Ленуар запатентовал двигатель, работавший на угольном газе и воздухе – паровой двигатель. Его двигатель был прототипом современных двигателей внутреннего сгорания, но, несмотря на то, что автомобили, которые он построил, были способны двигаться, его двигатели были громоздкими и неэффективными.

Отто продолжил дело Ленуара, применив его давнюю идею создания четырехтактного двигателя.

Развил изобретение Ленуара газовый двигатель для создания нового на жидком топливе, но все же, это был двухтактный двигатель. Только в 1874 году Отто удалось построить надлежащую систему зажигания, чтобы заставить работать его полнотактный двигатель. В следующие несколько лет его успех был огромен, было продано более 30 000 штук, и вскоре все более ранние открытия предались забвению.

 

Дальнейшее развитие

Между тем, успешный инженер Готлиб Даймлер , который раньше работал на заводе двигателей Отто, решил пойти своим путем, пытаясь улучшить детище Отто. Его убедили поставить двигатель в машину. В 1883 году он создал модифицированную систему зажигания, производившую 900 циклов в минуту.

В последующие годы Daimler сконструировал первый в истории мотоцикл и, наконец, сумел создать легкий двигатель, подходящий для автомобилестроения.

В то время как Даймлер, наконец, запатентовал свое открытие, Карл Бенц был в нескольких шагах и на несколько месяцев впереди со своим автомобилем на трех колесах. Daimler и Benz выпустили свои автомобили на рынок практически одновременно, всего через пару лет. Все их автомобили имели двигатели, основанные на изобретении Отто .

4-дверный семейный автомобиль. Что такое семейный автомобиль?

Amazon Auto Links: товары не найдены.

(PDF) Как технология общего назначения «Двигатель внутреннего сгорания» способствовала Третьей промышленной революции Силовые двигатели.

Ссылки

Андерсон, П., и Ташман, М.Л. (1990). Технологические разрывы и доминирующие конструкции: циклическая модель технологических изменений

. Административная наука Ежеквартально, 35 (4), 604-633.

doi:10.2307/2393511

Бергек А., Якобссон С., Карлссон Б., Линдмарк С. и Рикне А. (2008). Анализ функциональной

динамики технологических инновационных систем: схема анализа. Research Policy, 37(3), 407-

429.doi: http://dx.doi.org/10.1016/j.respol.2007.12.003

Бреснахан, Т. Ф., и Трайтенберг, М. (1995). Технологии общего назначения «Двигатели роста»? Журнал

Эконометрика, 65(1), 83-108.

Кларк, Дж., Фриман, К., и Соете, Л. (1981). Длинные волны, изобретения и инновации. Futures, 13(4), 308-

322. doi: http://dx.doi.org/10.1016/0016-3287(81)

-4

Дэвид, П. А. (1975). Технический выбор, инновации и экономический рост: очерки американского и британского опыта в девятнадцатом веке: издательство Кембриджского университета.

Дэвид, Пенсильвания (1989). Компьютер и динамо-машина: современный парадокс производительности в не слишком далеком зеркале

(339). Получено из

Дэвид, П.А., и Райт, Г. (1999). Технологии общего назначения и скачки производительности: исторический

Размышления о будущем революции в области ИКТ.

де Гроот, Б., и Франсес, П. Х. (2005). Циклы в базовых инновациях. Получено из

Доси, Г. (1982). Технологические парадигмы и технологические траектории: предлагаемая интерпретация

определяющих факторов и направлений технических изменений.Политика исследований, 11(3), 147-162.

doi: http://dx.doi.org/10.1016/0048-7333(82)

-6

Dosi, G. (1988). Источники, процедуры и микроэкономические эффекты инноваций. Журнал экономической литературы

, 26(3), 1120-1171. doi: 10.2307/2726526

Duijn, JJ v. (1977). Длинная волна экономической жизни. Де Экономист, 125(4), 544-576.

Фриман, К. (1985). Экономика инноваций. Iee Proceedings-a-Science Measurement and

Technology, 132(4), 213-221.

Гилфиллан, Южная Каролина (1935). Социология изобретения. Очерк социальных причин технического изобретения и некоторых его социальных результатов; особенно как показано в истории корабля. Чикаго: Издательская компания Follett

.

Грилиш, З. (1957). Гибридная кукуруза: исследование экономики технологических изменений.

Эконометрика, 25(4), 501-522. doi: 10.2307/1905380

Griliches, Z. (1998). Патентная статистика как экономические показатели: обзор.В исследованиях и разработках и производительности: эконометрические данные

(стр. 287–343): University of Chicago Press.

Хелпман, Э. (1998). Технологии общего назначения и экономический рост: MIT Press.

Йованович, Б., и Руссо, П.Л. (2005). Технологии общего назначения. В A. Philippe & ND Steven

(Eds.), Справочник по экономическому росту (том 1, часть B, стр. 1181-1224): Elsevier.

Кляйнкнехт, А. (1981). Наблюдения за шумпетеровским роением инноваций.Futures, 13(4), 293-

307.

Кляйнкнехт, А., Ван Монфор, К., и Брауэр, Э. (2002). Нетривиальный выбор между инновационными

и

показателями. Экономика инноваций и новых технологий, 11(2), 109-121.

Липси, Р. Г., Бекар, К., и Карлоу, К. (1998). Что требует объяснения. Технологии общего назначения

и экономический рост, 2, 15-54.

Липси, Р. Г., Карлоу, К. И., и Бекар, К. Т. (2005). Экономические преобразования: общего назначения

Технологии и долгосрочный экономический рост: Издательство Оксфордского университета.

Маклорен, В. Р. (1953). Последовательность от изобретения к инновациям и ее связь с экономическим

ростом. Ежеквартальный журнал экономики, 67 (1), 97-111. doi:10.2307/1884150

Да здравствует двигатель внутреннего сгорания

Двигатель внутреннего сгорания выделяется как изобретение, которое изменило все аспекты человеческой жизни. Спустя более ста лет после его изобретения он по-прежнему остается основным двигателем промышленности и транспорта по всему миру.

Тем не менее, поскольку мир борется с последствиями изменения климата, возникают опасения по поводу вклада двигателей внутреннего сгорания в глобальное потепление. Исторически сложилось так, что улучшения конструкции были сосредоточены на максимальном увеличении его мощности и крутящего момента, с небольшими инновациями, когда дело доходит до улучшения его экологических характеристик. Но эта тенденция меняется, и быстро. Это во многом связано с его повсеместной распространенностью, особенно в морской отрасли.

«Жизнеспособных альтернатив двигателю внутреннего сгорания не так много», — заявляет Люсьен Купманс , профессор и глава отдела систем сгорания и двигателей в Университете Чалмерса, Швеция.«Электродвигатели — это вариант, когда важно свести к минимуму выбросы и твердые частицы — в регулируемых зонах, при входе и выходе из гавани — но отказ от грузового пространства и веса в пользу места для батареи является большой проблемой, если необходимо преодолеть большие расстояния».

«Нам все еще нужен двигатель внутреннего сгорания. Это лучшее, что у нас есть на пути к устойчивому судоходству. На самом деле, сегодня можно привести судно в действие и иметь почти нулевые выбросы с помощью современных альтернативных источников энергии и экологически чистых решений для сжигания», — утверждает Фредрик Остман, генеральный директор Wärtsilä Marine Business, Strategy & Business Development.

Как это сделать? Хитрость, по словам экспертов, заключается в том, чтобы найти способ уменьшить выбросы парниковых газов этими двигателями за счет использования альтернативных видов топлива и более интеллектуальных и эффективных способов сжигания.

Улучшение зарекомендовавших себя конструкций

«Наша цель — максимально оптимизировать эффективность процессов сгорания, используя различные виды топлива с низким содержанием углерода, такие как биотопливо, аммиак, водород и метанол», — объясняет Остман. «Применение такого мелкого и расширенного контроля к процессу горения стало возможным только в последнее десятилетие или около того благодаря достижениям в области управления горением и компьютерного моделирования.”

По мере того, как дебаты о климате разгорались, все больше исследований было направлено на изучение мелочей фактического процесса сгорания вплоть до атомного уровня, а также того, что происходит с различными видами топлива и их тепловым КПД при сгорании при различных давлениях и физических состояниях.

«Поскольку компьютерная мощность стала дешевле и сложнее, большая часть наших усилий сосредоточена на моделировании параметров горения, таких как турбулентность и хаос, с использованием различных видов топлива и типов применения, таких как распыление и распыление, чтобы увеличить тепловую эффективность (выход/вход) двигатели большие и маленькие.И обычно чем больше двигатель, тем выше эффективность, которую вы можете получить», — говорит Купманс.

По словам Купманса, святой Грааль достигает 60-процентной эффективности, что не так уж и далеко. Wärtsilä занесена в Книгу рекордов Гиннеса за свой двигатель Wärtsilä 31, самый эффективный 4-тактный дизельный двигатель в мире с топливной эффективностью более 50 процентов.

«Все сводится к экономическому аргументу. Будет ли когда-нибудь такое дешевое топливо, как тяжелое дизельное топливо? Каждая альтернатива, о которой мы знаем, требует множества дорогостоящих процессов, чтобы сделать их жизнеспособными для сжигания в больших масштабах.Поскольку поставки биотоплива будут ограничены, такие отрасли, как авиация, способные платить больше за топливо, скорее всего, сожрут все, что есть в наличии».

Но Эстман говорит: «Экономика действительно важна, но цена тяжелого топлива не имеет значения, если действует законодательство о выбросах, которое заставляет отрасль переходить на альтернативные виды топлива. Таким образом, учитывая строгое регулирование выбросов парниковых газов, относительная стоимость альтернативных видов топлива будет иметь важное значение».

Поиск альтернативных решений

Однако одним из видов топлива, набирающим популярность во всем мире, является сжиженный природный газ, или СПГ. В настоящее время по всему миру строятся бункеровочные комплексы для использования двухтопливных (DF) возможностей.

«Нет ничего, что двигатель внутреннего сгорания делает на тяжелом топливе, чего нельзя было бы сделать на сжиженном природном газе», — говорит Остман. «СПГ не содержит серы, что упрощает соблюдение требований. Реальность такова, что двигатель внутреннего сгорания действительно не заботится о топливе. Пока он горит, мы можем использовать его в наших двигателях».

«Углеродно-нейтральные виды топлива, такие как синтетический СПГ, сегодня кажутся наиболее экономически выгодными для обеспечения устойчивости судоходной отрасли. Но в то же время также ясно, что будет большая палитра видов топлива с большими локальными вариациями доступности.Итак, нам нужно сосредоточиться на топливной гибкости. Тестирование различных видов топлива является основным элементом нашего бизнеса, которым мы постоянно занимаемся. Большой набор различных видов биотоплива, водород и метанол проверен годами в наших двигателях. В настоящее время мы также изучаем, что означает использование аммиака в качестве топлива. Что нас снова и снова поражает, так это то, что двигатель внутреннего сгорания чрезвычайно гибок в отношении топлива, и для его адаптации к новым видам топлива требуются лишь незначительные изменения. Большая часть необходимой инфраструктуры уже создана, технология отработана и безопасна, и у нас есть необходимые правила — наряду с многолетним опытом!»

В то время как работа по поиску более чистых видов топлива и новых экзотических технологий продолжается, ясно, что именно двигатель внутреннего сгорания останется основой морской промышленности.И поскольку усилия по повышению эффективности продолжаются, он лучше всего подходит для перехода к будущему с низким уровнем выбросов, которое сектор отчаянно ищет.

«Двигатель внутреннего сгорания остается основным транспортным средством, потому что он обеспечивает гибкость в отношении топлива, оставляя двери широко открытыми для будущих возобновляемых жидких и газообразных топлив по мере того, как они становятся совместимыми, готовыми к выпуску на рынок и доступными», — говорит Остман.

ИЗОБРЕТЕНИЕ ДВИГАТЕЛЯ ВНУТРЕННЕГО СГОРАНИЯ | Эдмунд Кармин

Результатом более чем 30-летнего сотрудничества изобретателей стал первый полностью функционирующий двигатель внутреннего сгорания (1791–1823).Этот двигатель создал возможности для более эффективной транспортировки и действительно портативного источника энергии. Это решило потребность в быстрой перевозке людей и грузов. Он создал более дешевую механическую энергию и устранил дорогостоящий паровой двигатель. Это небольшая портативная машина, которая преобразует накопленную химическую энергию в механическую. Это увеличило экономические возможности и улучшило образ жизни. Это решило проблемы голода, потому что увеличило урожайность благодаря достижениям в сельскохозяйственной технике.Это снизило стоимость дорогостоящего процесса доставки. Мой личный фаворит — изобретение личных автомобилей. В 1886 году Карл Бенц начал использовать свой патент на двигатель для создания автомобилей и других автомобилей. Он основал компанию, которую мы все сегодня знаем как Mercedes Benz. А затем, в 1903 году, Ford Motor Company запустила массовую сборочную линию, на которой работали тысячи американцев, и стала первой компанией, начавшей массовое производство автомобилей. Изобретение этого двигателя позволило массе расти в самых разных направлениях, и сегодня мы видим, как его используют по-разному.От бензопил лесорубов в Канаде, аварийных электрогенераторов в Африке, которые позволяют оказывать медицинскую помощь местным жителям, до авиаперелетов; двигатели внутреннего сгорания изменили то, как люди живут и взаимодействуют.

Ранее сегодня, когда моя группа пыталась изобрести очиститель воды с загадочным мешком материалов, мы сразу подумали о существующих методах, а затем открыли свой мешок. Мы увидели кофейный фильтр и сразу признали его способность фильтровать воду. Однако мы знали, что этого будет недостаточно, поэтому мы использовали воздушный шар в качестве первой ступени фильтра.Мы использовали гравитацию, чтобы пропустить фильтрацию воды. Чтобы придумать конечный продукт, мы сотрудничали и перечисляли идеи друг друга, и в конце концов у нас был продукт, которым мы все были довольны и в котором были уверены. Точно так же многие изобретатели двигателя внутреннего сгорания использовали идеи и инновации друг друга для производства. легендарная машина.

Источники:

https://en.wikipedia.org/wiki/History_of_the_internal_combustion_engine

https://en.wikipedia.org/wiki/Karl_Benz

https://en.wikipedia.org/wiki/Ford_Motor_Company

Двигатель внутреннего сгорания (изобретения)

Изобретение: Самый распространенный тип двигателя в автомобилях и многих других транспортных средствах, двигатель внутреннего сгорания характеризуется тем, что он сжигает жидкое топливо внутри — в отличие от двигателей, таких как паровой двигатель, которые сжигают топливо в наружных печах.

Авторы изобретения:

Сэр Гарри Ральф Рикардо (1885–1974), английский инженер Оливер Торникрофт (1885–1956), инженер и руководитель работ Сэр Дэвид Рэндалл Пай (1886–1960), инженер и администратор
Сэр Роберт Уэйли Коэн (1877–1952) ), ученый и промышленник

Двигатель внутреннего сгорания: 1900-1916

К началу ХХ века двигатели внутреннего сгорания были практически везде.Городские улицы Берлина, Лондона и Нью-Йорка были заполнены автомобильным и грузовым транспортом; на смену парусам пришли лодочные двигатели с бензиновым и дизельным двигателем; стационарные паровые двигатели для выработки электроэнергии вытеснялись двигателями внутреннего сгорания. Не обошлось и без авиации: от первого пилотируемого полета братьев Райт в 1903 году до боевых самолетов Первой мировой войны потребовалось немногим более десяти лет.
Однако двигатели внутреннего сгорания того времени имели примитивную конструкцию.Они были тяжелыми (от 10 до 15 фунтов на выходную мощность по сравнению с 1–2 фунтами сегодня), медленными (обычно 1000 или меньше оборотов в минуту или меньше, в отличие от 2000–5000 сегодня) и крайне неэффективными в извлечении энергии. состав их топлива. Это не было серьезным недостатком для стационарных приложений или даже для дорожного движения, скорость которого редко превышала 30 или 40 миль в час, но появление военных самолетов и танков потребовало повышения эффективности двигателей.


Конструкция двигателя и топлива

Гарри Рикардо, сын архитектора и внук (со стороны матери) инженера, был центральной фигурой в необходимой модернизации двигателей внутреннего сгорания.Будучи школьником, он построил паровой двигатель, работающий на угле, для своего велосипеда, а в Кембриджском университете изготовил одноцилиндровый бензиновый мотоцикл, вобравший в себя многие из своих собственных идей, который выиграл соревнование по экономии топлива, проехав на нем почти 40 миль. литр бензина. Он также начал разработку двухтактного двигателя под названием «Дельфин», который позже был произведен для использования в рыбацких лодках и автомобилях. Фактически, в 1911 году Рикардо взял свою новую невесту в свадебное путешествие на автомобиле с двигателем Dolphin.
Толчок, который привел к серьезным исследованиям в области двигателей, появился в 1916 году, когда Рикардо был инженером в фирме своей семьи. Британское правительство запросило танковые двигатели новой конструкции, которые должны были работать в грязи и слякоти боя, при наклоне до 35 градусов и не могли испускать предательские облака синего масляного дыма. Рикардо решил проблему специальной конструкцией поршня и циркуляцией воздуха вокруг карбюратора и внутри двигателя для охлаждения масла.
Конструкторские работы по танковым двигателям превратили Рикардо в полноценного инженера-исследователя.В 1917 году он основал собственную компанию, и вскоре последовал ряд замечательных открытий. Он исследовал проблему детонации топливно-воздушной смеси в цилиндре внутреннего сгорания. Предполагается, что смесь воспламеняется свечой зажигания в верхней части такта сжатия, при этом контролируемый фронт пламени распространяется со скоростью, примерно равной скорости головки поршня, когда он движется вниз в такте рабочего хода. Однако некоторые виды топлива детонировали (самопроизвольно воспламенялись во всей топливно-воздушной смеси) в результате самого сжатия, что приводило к снижению эффективности использования топлива и повреждению двигателя.
В сотрудничестве с Робертом Уэйли Коэном из Shell Petroleum Рикардо провел оценку химических смесей топлива и обнаружил, что парафины (такие как н-гептан, современный низкооктановый стандарт) легко детонируют, а ароматические соединения, такие как толуол, почти не подвержены детонации. Он установил рейтинг «толуольного числа», чтобы описать склонность различных видов топлива к детонации; этот номер был заменен в

Четыре цикла стандартного двигателя внутреннего сгорания (слева направо): (1) впуск, когда воздух поступает в цилиндр и смешивается с парами бензина; (2) сжатие, когда цилиндр герметичен, а поршень движется вверх для сжатия воздушно-топливной смеси; (3) мощность, когда свеча зажигания воспламеняет смесь, создавая большее давление, толкающее поршень вниз; и (4) выхлоп, когда сгоревшие газы выходят из цилиндра через выпускное отверстие.
в 1920-х годах по «октановому числу», разработанному Томасом Миджли в лабораториях Delco в Дейтоне, штат Огайо.
Работа с топливом проводилась в экспериментальном двигателе, разработанном Рикардо, который позволял непосредственно наблюдать за фронтом пламени по мере его распространения и позволял изменять степень сжатия во время работы двигателя. В результате исследования были выявлены три принципа: топливно-воздушная смесь должна подаваться с максимально возможной турбулентностью для тщательного перемешивания и эффективного сгорания; свеча зажигания должна располагаться по центру, чтобы предотвратить детонацию удаленных очагов смеси до того, как до них дойдет фронт пламени; и смесь должна быть как можно более холодной, чтобы предотвратить детонацию.
Затем эти принципы были применены в первом по-настоящему эффективном двигателе с боковым расположением клапанов («L-образная головка»), то есть двигателе с клапанами в камере сбоку от цилиндра, в блоке цилиндров, а не над головой. в головке двигателя. Рикардо запатентовал эту конструкцию и, выиграв патентный спор в суде в 1932 году, получил за нее гонорары или консультационные услуги от производителей двигателей со всего мира.

Воздействие

Двигатель с боковым расположением клапанов был рабочей лошадкой для автомобильных и судовых двигателей до окончания Второй мировой войны.Благодаря тому, что его клапаны приводятся в действие непосредственно распределительным валом в картере, он прост, прочен и прост в изготовлении. Верхние клапаны с верхним распределительным валом сегодня являются стандартом для автомобильных двигателей, но двигатель с боковым клапаном все еще используется в морских приложениях и в небольших двигателях для газонокосилок, домашних генераторных систем и т.п. Благодаря своему широкому использованию и десятилетиям эксплуатации двигатель с боковым расположением клапанов представляет собой научный и технологический прорыв в двадцатом веке.
Рикардо и его коллеги Оливер Торникрофт и Д.Р. Пай продолжал создавать другие конструкции двигателей, в частности, авиационный двигатель с золотниковым клапаном, который был базовой моделью для большинства великих британских самолетов времен Второй мировой войны, и ранние версии авиационного реактивного двигателя. За свои технические достижения и службу правительству Рикардо был избран членом Королевского общества в 1929 г., а в 1948 г. он был посвящен в рыцари.
См. также Щелочная аккумуляторная батарея; сборочная линия; Тепловоз; Дирижабль; Газоэлектрический автомобиль; взаимозаменяемые части; Процесс термического крекинга.

.

Add a comment

Ваш адрес email не будет опубликован.